CMSE 890-001: Spectral Graph Theory and Related Topics, MSU, Spring 2021

Homework 06

Due: March 14, 2021

In this homework you will have some exercises related to graph signal processing. Many of them appeared (or will appear) in our class lectures.

Exercise 1. Let \boldsymbol{B} be a symmetric, $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ (here, even though we use λ_k to denote the eigenvalues, \boldsymbol{B} does not have to be a graph Laplacian) and corresponding orthonormal eigenvectors $\boldsymbol{\phi}_1, \ldots, \boldsymbol{\phi}_n$. Let $\boldsymbol{\Phi}$ be the $n \times n$ matrix whose k^{th} column is $\boldsymbol{\phi}_k$, and let $\boldsymbol{\Lambda}$ be the $n \times n$ diagonal matrix with $\boldsymbol{\Lambda}(k,k) = \lambda_k$. Prove that for any polynomial p,

$$p(\boldsymbol{B}) = \boldsymbol{\Phi} p(\boldsymbol{\Lambda}) \boldsymbol{\Phi}^T$$

where p(C) for a matrix C and a polynomial $p(t) = \sum_{j=0}^{m} c_j t^j$ is defined as

$$p(\mathbf{C}) := \sum_{j=0}^{m} c_j \mathbf{C}^j.$$

Exercise 2. Let G = (V, E) be a graph and let **B** be a matrix such that

$$\forall a, b \in V, \ a \neq b, \ b \notin N(a) \implies \mathbf{B}(a, b) = 0.$$

Prove that

$$\forall a, b \in V, \ a \neq b, \ b \notin N_m(a) \implies (\mathbf{B}^m)(a, b) = 0,$$

where $N_m(a)$ is the m-hop neighborhood of a,

$$N_m(a) := \{ b \in V : b \neq a \text{ and } dist(a, b) \leq m \},$$

and where dist(a, b) is the length of the shortest path connecting a to b.

Exercise 3. Let G = (V, E, w) be a connected graph, let $\boldsymbol{x} : V \to \mathbb{R}$ be a graph signal, and let $\boldsymbol{x}_b : V \to \mathbb{R}$ be the graph translation of \boldsymbol{x} to the vertex b, which is defined as:

$$\boldsymbol{x}_b := \sqrt{n} \sum_{k=1}^n \widehat{\boldsymbol{x}}(k) \boldsymbol{\psi}_k(b) \boldsymbol{\psi}_k$$
.

Prove that graph translation preserves the mean of \boldsymbol{x} (analogous to standard translation of Euclidean signals), i.e., show that:

$$\sum_{a \in V} \boldsymbol{x}(a) = \sum_{a \in V} \boldsymbol{x}_b(a) .$$

Exercise 4 (30 points). Complete the Python Jupyter notebook homework06_gsp.ipynb.