CMSE 890-001: Spectral Graph Theory and Related Topics, MSU, Spring 2021

Lecture 09: Perron-Frobenius Theory February 16, 2021

Lecturer: Matthew Hirn

Our goal in this lecture is to prove Perron-Frobenius Theorem, which we stated in the last lecture for the adjacency matrix M of a graph G, but which in fact has a more general statement for symmetric, non-negative matrices. We will provide the more general statement shortly.

First, let \boldsymbol{A} be an $n \times n$ symmetric matrix with non-negative entries. Define diag(\boldsymbol{A}) as the $n \times n$ matrix with the diagonal of \boldsymbol{A} on its diagonal, and zeroes elsewhere. Note that we can decompose \boldsymbol{A} as:

$$\mathbf{A} = \operatorname{diag}(\mathbf{A}) + \mathbf{M}$$
,

where M is an $n \times n$, symmetric matrix with zeros down its diagonal. We use the notation M because, indeed, M defines an adjacency matrix of a weighted graph $G(\mathbf{A}) = (V, E, w)$ with vertices $V = \{1, \ldots, n\}$, edges

$$E = \{(a, b) \in V \times V : \mathbf{M}(a, b) > 0\},\$$

and weights w(a, b) = M(a, b). We refer to G(A) as the graph induced by A. We are now ready to state the more general version of the Perron-Frobenius Theorem.

Theorem 26 (Perron-Frobenius Theorem, more general version). Let \mathbf{A} be an $n \times n$ symmetric matrix with non-negative entries, with eigenvalues $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$, and with corresponding orthonormal eigenvectors $\boldsymbol{\phi}_1, \boldsymbol{\phi}_2, \ldots, \boldsymbol{\phi}_n$. If the graph $G(\mathbf{A})$ induced by \mathbf{A} is connected, then

- 1. One can take $\phi_1(a) > 0$ for all $a \in V$
- 2. $\mu_1 \ge |\mu_n|$
- 3. $\mu_1 > \mu_2$

As mentioned last time, we will need two results to prove Theorem 24. The first of these was the following theorem.

Theorem 25. Let A be a real-valued, symmetric matrix and let μ_1 be the largest eigenvalue of A. If

$$\mu_1 = rac{oldsymbol{x}^T oldsymbol{A} oldsymbol{x}}{oldsymbol{x}^T oldsymbol{x}} \,,$$

for some $\mathbf{x} \in \mathbb{R}^n$, then $\mathbf{A}\mathbf{x} = \mu_1 \mathbf{x}$. The same result holds for μ_n , the minimum eigenvalue of \mathbf{A} .

We proved Theorem 25 in the last lecture. The second result we will need is the following lemma.

Lemma 27. Let \mathbf{A} be an $n \times n$ symmetric matrix with non-negative entries such that the graph $G(\mathbf{A})$ induced by \mathbf{A} is connected. Let $\boldsymbol{\phi}$ be an eigenvector of \mathbf{A} such that $\boldsymbol{\phi}(a) \geq 0$ for all $a \in V$. Then $\boldsymbol{\phi}(a) > 0$ for all $a \in V$.

Proof. Suppose ϕ is not strictly positive. Then there exists some vertex $a \in V$ for which $\phi(a) = 0$. Since $G = G(\mathbf{A}) = (V, E, w)$ is connected, there must also be a vertex $b \in V$ (possibly with b = a) such that $\phi(b) = 0$ and for some $c \in N(b)$, $\phi(c) > 0$. Let μ be the eigenvalue of ϕ . Then:

$$0 = \mu \phi(b) = \mathbf{A}\phi(b) = \mathbf{A}(b,b)\phi(b) + \sum_{v \in N(b)} \mathbf{A}(b,v)\phi(v) \ge \mathbf{A}(b,c)\phi(c) > 0,$$

since $(b,c) \in E$ implies that A(b,c) > 0. However, this is a contradiction.

Now we can prove the Perron-Frobenius Theorem.

Proof of Theorem 24. Let $G = G(\mathbf{A}) = (V, E, w)$ be the graph induced by \mathbf{A} .

First part: Let ϕ_1 be an eigenvector of A with eigenvalue μ_1 and with unit norm, $\|\phi_1\| = 1$. Set

$$\boldsymbol{y}(a) := |\boldsymbol{\phi}_1(a)|, \quad a \in V.$$

Notice that $\|\boldsymbol{y}\| = \|\boldsymbol{\phi}_1\| = 1$ as well, so for both vectors their Rayleigh quotient has denominator equal to one. We have:

$$\mu_1 = \boldsymbol{\phi}_1^T \boldsymbol{A} \boldsymbol{\phi}_1 = \sum_{a \in V} \boldsymbol{A}(a, a) \boldsymbol{\phi}_1(a)^2 + 2 \sum_{(a, b) \in E} \boldsymbol{A}(a, b) \boldsymbol{\phi}_1(a) \boldsymbol{\phi}_1(b)$$

$$\leq \sum_{a \in V} \boldsymbol{A}(a, a) |\boldsymbol{\phi}_1(a)|^2 + 2 \sum_{(a, b) \in E} \boldsymbol{A}(a, b) |\boldsymbol{\phi}_1(a)| |\boldsymbol{\phi}_1(b)|$$

$$= \sum_{a \in V} \boldsymbol{A}(a, a) \boldsymbol{y}(a)^2 + 2 \sum_{(a, b) \in E} \boldsymbol{A}(a, b) \boldsymbol{y}(a) \boldsymbol{y}(b)$$

$$= \boldsymbol{y}^T \boldsymbol{A} \boldsymbol{y}.$$

But by the Courant-Fischer Theorem (Theorem 3),

$$\mu_1 = \max_{\substack{oldsymbol{x} \in \mathbb{R}^n \ oldsymbol{x}
eq oldsymbol{0}}} rac{oldsymbol{x}^T oldsymbol{A} oldsymbol{x}}{oldsymbol{x}^T oldsymbol{x}} \, ,$$

which means that we must have $\mu_1 = \mathbf{y}^T \mathbf{A} \mathbf{y}$. But then, by Theorem 25, \mathbf{y} must be an eigenvector of \mathbf{A} . Finally, applying Lemma 27, we see that \mathbf{y} be must be strictly positive.

Second part: Let ϕ_n be an eigenvector of A with eigenvalue μ_n and with unit norm, $\|\phi_n\| = 1$. Similarly to the first part, set

$$\mathbf{y}(a) := |\boldsymbol{\phi}_n(a)|, \quad a \in V.$$

We have:

$$|\mu_n| = |\boldsymbol{\phi}_n^T \boldsymbol{A} \boldsymbol{\phi}_n| = \left| \sum_{a \in V} \boldsymbol{A}(a, a) \boldsymbol{\phi}_n(a)^2 + 2 \sum_{(a, b) \in E} \boldsymbol{A}(a, b) \boldsymbol{\phi}_n(a) \boldsymbol{\phi}_n(b) \right|$$

$$\leq \sum_{a \in V} \boldsymbol{A}(a, a) |\boldsymbol{\phi}_n(a)|^2 + 2 \sum_{(a, b) \in E} \boldsymbol{A}(a, b) |\boldsymbol{\phi}_n(a)| |\boldsymbol{\phi}_n(b)|$$

$$= \sum_{a \in V} \boldsymbol{A}(a, a) \boldsymbol{y}(a)^2 + 2 \sum_{(a, b) \in E} \boldsymbol{A}(a, b) \boldsymbol{y}(a) \boldsymbol{y}(b)$$

$$= \boldsymbol{y}^T \boldsymbol{A} \boldsymbol{y}$$

$$\leq \mu_1.$$

Third part: Take ϕ_1 to be the normalized eigenvector of \boldsymbol{A} with eigenvalue μ_1 that is strictly positive (using part 1). Let ϕ_2 be an eigenvector of \boldsymbol{A} with eigenvalue μ_2 , unit norm, $\|\phi_2\| = 1$, and that is orthogonal to ϕ_1 . Following the same method as the previous two parts, set

$$\boldsymbol{y}(a) := |\boldsymbol{\phi}_2(a)|, \quad a \in V.$$

We have that

$$\mu_{2} = \boldsymbol{\phi}_{2}^{T} \boldsymbol{A} \boldsymbol{\phi}_{2} = \sum_{a \in V} \boldsymbol{A}(a, a) \boldsymbol{\phi}_{2}(a)^{2} + 2 \sum_{(a, b) \in E} \boldsymbol{A}(a, b) \boldsymbol{\phi}_{2}(a) \boldsymbol{\phi}_{2}(b)$$

$$\leq \sum_{a \in V} \boldsymbol{A}(a, a) |\boldsymbol{\phi}_{2}(a)|^{2} + 2 \sum_{(a, b) \in E} \boldsymbol{A}(a, b) |\boldsymbol{\phi}_{2}(a)| |\boldsymbol{\phi}_{2}(b)|$$

$$= \sum_{a \in V} \boldsymbol{A}(a, a) \boldsymbol{y}(a)^{2} + 2 \sum_{(a, b) \in E} \boldsymbol{A}(a, b) \boldsymbol{y}(a) \boldsymbol{y}(b)$$

$$= \boldsymbol{y}^{T} \boldsymbol{A} \boldsymbol{y}$$

$$\leq \mu_{1}.$$

Of course we already knew $\mu_1 \geq \mu_2$, but the important parts of the above calculation are the steps in between. Now suppose that $\mu_1 = \mu_2$. Then, by the above calculation, $\mathbf{y}^T \mathbf{A} \mathbf{y} = \mu_1$. Thus, by Theorem 25, \mathbf{y} must be an eigenvector of \mathbf{A} with eigenvalue μ_1 . Since \mathbf{y} is a nonnegative eigenvector of \mathbf{A} , we can apply Lemma 27 to conclude that \mathbf{y} is strictly positive, which in turn implies that $\phi_2(a) \neq 0$ for all $a \in V$.

Now, since $\langle \phi_1, \phi_2 \rangle = 0$ and $\phi_1(a) > 0$ for all $a \in V$, it must be that ϕ_2 has some positive entries and some negative entries. Since G is connected and since $\phi_2(a) \neq 0$ for all $a \in V$, it must be that there exists an $(u, v) \in E$ such that

$$\phi_2(u) < 0 < \phi_2(v).$$

But if that is the case, then

$$\mu_{2} = \sum_{a \in V} \mathbf{A}(a, a) \phi_{2}(a)^{2} + 2 \sum_{\substack{(a,b) \in E \\ (a,b) \neq (u,v)}} \mathbf{A}(a,b) \phi_{2}(a) \phi_{2}(b) + 2 \mathbf{A}(u,v) \phi_{2}(u) \phi_{2}(v)$$

$$< \sum_{a \in V} \mathbf{A}(a,a) |\phi_{2}(a)|^{2} + 2 \sum_{\substack{(a,b) \in E \\ (a,b) \in E}} \mathbf{A}(a,b) |\phi_{2}(a)| |\phi_{2}(b)| = \mu_{1}.$$

Thus $\mu_2 < \mu_1$, which contradicts the assumption that $\mu_2 = \mu_1$; we thus conclude that indeed $\mu_2 < \mu_1$.

Remark 16. Let $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$ be the eigenvalues of the adjacency matrix, M, of a graph G = (V, E). One can show if G is connected, then $\mu_1 = -\mu_n$ if and only if G is bipartite. The details can be found in [1, Chapter 4]

We can extend the Perron-Frobenius Theorem to the graph Laplacian (this was already clear) and graph Laplacian like matrices. Here is the result.

Corollary 28. Let $\widetilde{\boldsymbol{L}}$ be a symmetric, $n \times n$ matrix with non-positive off-diagonal entries, so that

$$\widetilde{\boldsymbol{L}} = \operatorname{diag}(\widetilde{\boldsymbol{L}}) - \boldsymbol{M}$$
,

where M is a symmetric, real-valued matrix with non-negative entries and zeroes down its diagonal. Suppose the graph G induced by M is connected. Let $\widetilde{\lambda}_1$ be the smallest eigenvalue of $\widetilde{\boldsymbol{L}}$ with eigenvector $\widetilde{\boldsymbol{\psi}}_1$. Then $\widetilde{\boldsymbol{\psi}}_1$ may be taken to be strictly positive, and $\widetilde{\lambda}_1$ has multiplicity one.

Proof. Set

$$m{A} = \sigma m{I} - \widetilde{m{L}} = (\sigma m{I} - \mathrm{diag}(\widetilde{m{L}})) + m{M}$$
 .

If we set σ such that

$$\sigma \ge \max_{a \in V} \widetilde{\boldsymbol{L}}(a, a)$$
,

then the matrix \boldsymbol{A} will be a symmetric matrix with non-negative entries such that the graph $G(\boldsymbol{A})$ is connected. We may therefore apply the Perron-Frobenius Theorem (the general version, Theorem 26) to the matrix \boldsymbol{A} , and conclude that its largest eigenvalue, μ_1 , has multiplicity one, and the eigenvector associated to μ_1 , ϕ_1 , may be taken to be strictly positive. But any eigenvector $\boldsymbol{\phi}$ of \boldsymbol{A} is an eigenvector of $\widetilde{\boldsymbol{L}}$, and if $\boldsymbol{A}\boldsymbol{\phi} = \mu\boldsymbol{\phi}$ then $\widetilde{\boldsymbol{L}}\boldsymbol{\phi} = (\sigma - \mu)\boldsymbol{\phi}$, i.e., $\widetilde{\lambda} = \sigma - \mu$ is the corresponding eigenvalue of $\widetilde{\boldsymbol{L}}$. Thus $\widetilde{\lambda}_1 = \sigma - \mu_1$ has multiplicity one.

References

[1] Daniel A. Spielman. Spectral and algebraic graph theory. Book draft, available at: http://cs-www.cs.yale.edu/homes/spielman/sagt/, 2019.

[2] Michael Perlmutter, Feng Gao, Guy Wolf, and Matthew Hirn. Geometric scattering networks on compact Riemannian manifolds. In *Proceedings of The First Mathematical and Scientific Machine Learning Conference, Proceedings of Machine Learning Research*, volume 107, pages 570–604, 2020.