Bridging graph signal processing and graph neural networks

Siheng Chen

Mitsubishi Electric Research Laboratories

Data with explicit graph

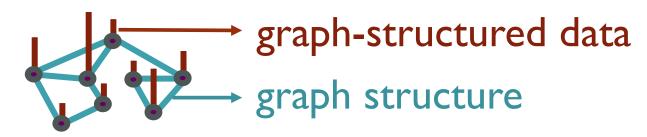
Social networks



Traffic networks

Internet of things

Human brain networks



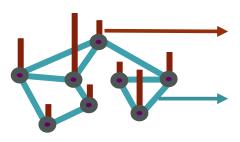
Data with explicit graph

Social networks

Traffic networks

Internet of things

Human brain networks



graph-structured datagraph structure

Data with explicit graph

Social networks

Traffic networks

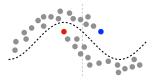
Internet of things

Human brain networks

Data with implicit graph

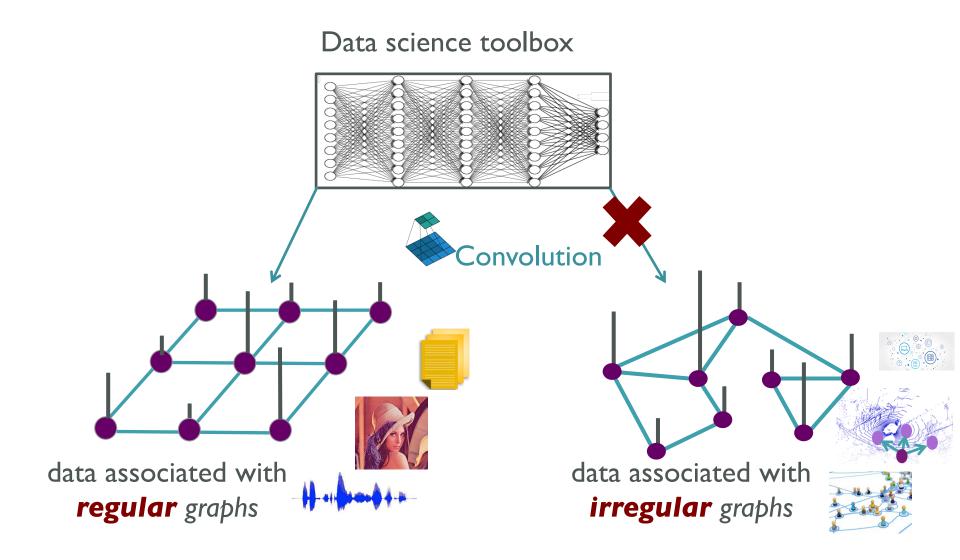
3D point cloud

Action recognition



Semi-supervised learning

Recommender systems



Graph-structured data science

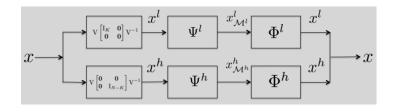
A data-science toolbox to process and learn from data associated with large-scale, complex, irregular graphs

Graph-structured data science

A data-science toolbox to process and learn from data associated with large-scale, complex, irregular graphs

Graph signal processing (GSP)

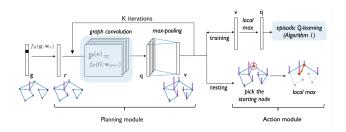
- Extend classical signal processing
- Analytical model
- Theoretical guarantee



Graph filter bank

Graph neural network (GNN)

- Extend deep learning techniques
- Data-driven model
- Empirical performance

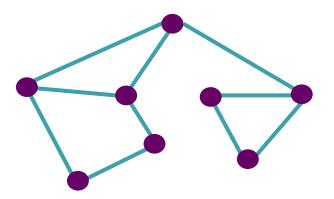


Graph neural network

Sampling & recovery of graph-structured data

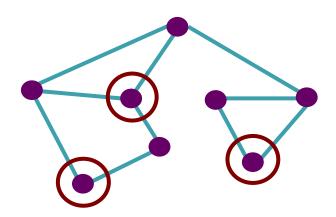
Task: Approximate the original graph-structured data by exploiting information from its subset

Look for data at each node



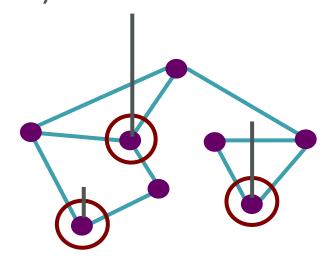
Task: Approximate the original graph-structured data by exploiting information from its subset

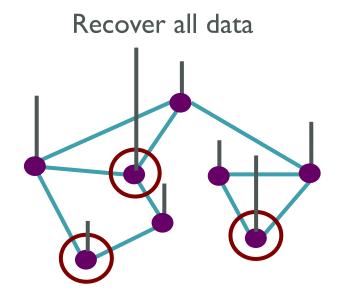
Select a few representative nodes

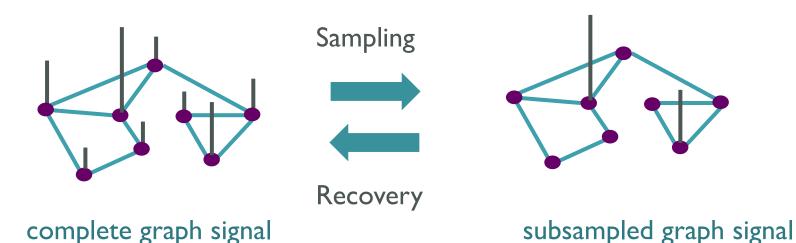


Task: Approximate the original graph-structured data by exploiting information from its subset

Query values at selected nodes

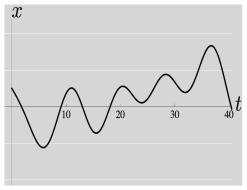




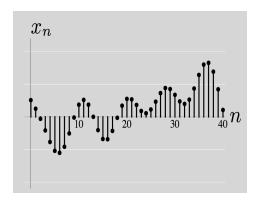


sampling:
$$\mathbf{x}' = \Psi \mathbf{x}$$

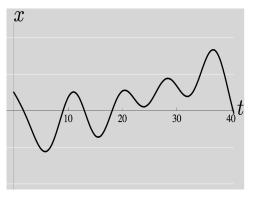
recovery: $\mathbf{x} = \Phi \mathbf{x}'$



complete continuous signal



subsampled sequence

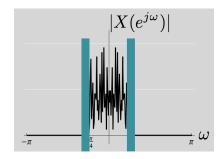


Sampling

Recovery

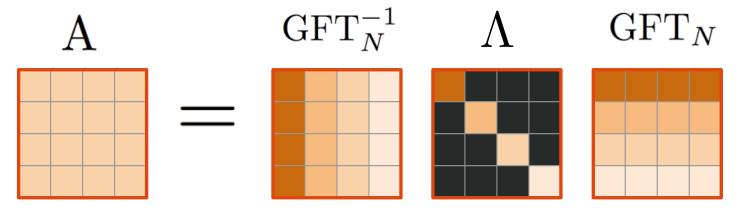
complete continuous signal

subsampled sequence

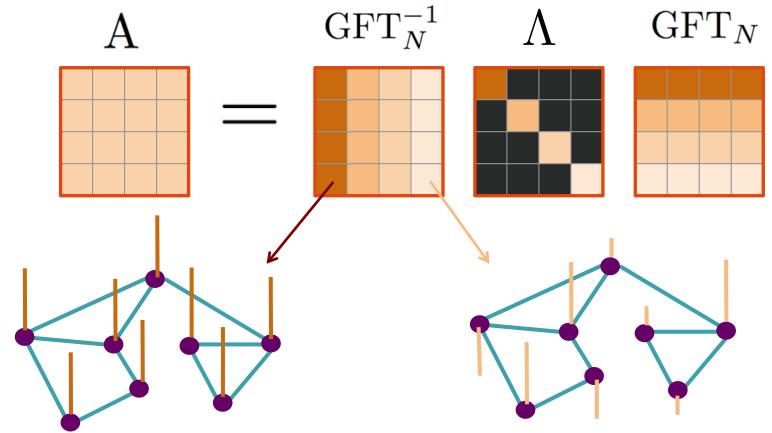


bandlimited in the Fourier domain

Graph Fourier transform



Graph Fourier transform



low-pass (smooth) Fourier vector

high-pass (nonsmooth) Fourier vector

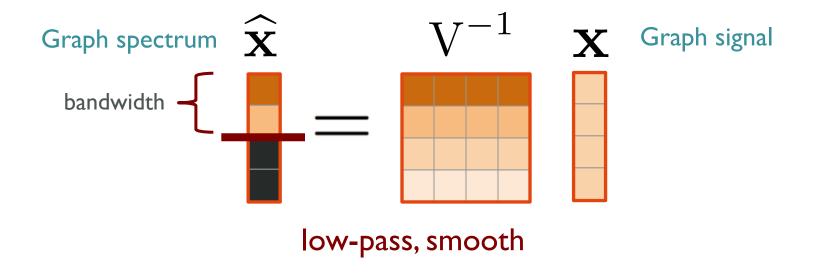
Graph Fourier transform



low-pass (smooth) Fourier vector

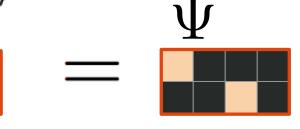
high-pass (nonsmooth) Fourier vector

Bandlimited graph signals



Problem formulation

Sampling process

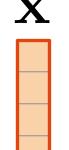


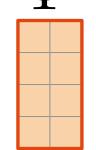
subsampled graph signal

complete graph signal

Recovery process recovery operator

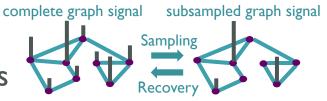
reconstruction





subsamples

Perfect recovery of bandlimited graph signals



Theorem 1. Let Ψ satisfy

qualified sampling operator

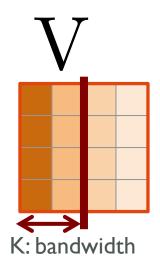
$$\operatorname{rank}(\Psi \operatorname{V}_{(K)}) = K,$$

where $V_{(K)} \in \mathbb{R}^{N \times K}$ denotes the first K columns of V. For all $x \in \operatorname{BL}_K(V^{-1})$, perfect recovery, $x = \Phi \Psi x$, is achieved by choosing

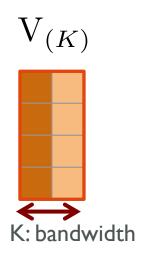
$$\Phi = V_{(K)} U,$$

with $U \Psi V_{(K)}$ a $K \times K$ identity matrix.

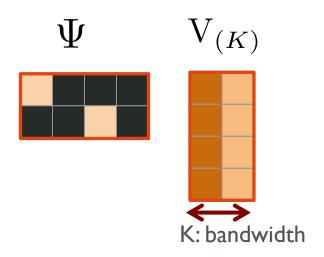
Sufficient condition for a qualified sampling operator



Sufficient condition for a qualified sampling operator

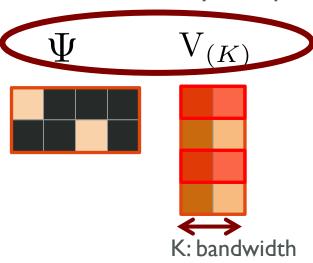


Sufficient condition for a qualified sampling operator



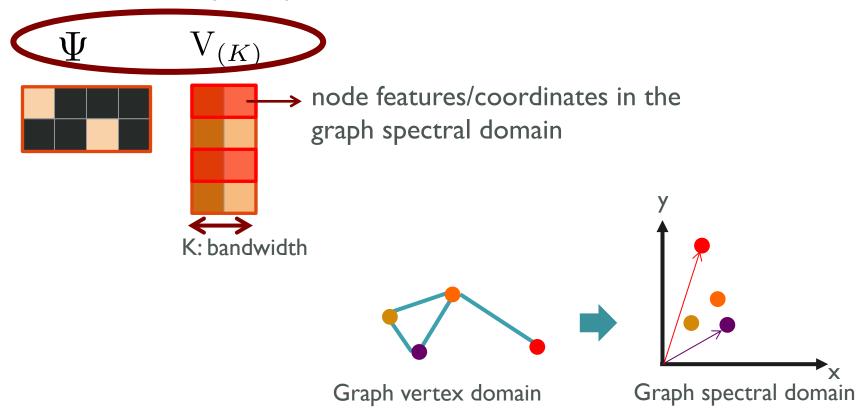
Sufficient condition for a qualified sampling operator

full rank: linearly independent



Sufficient condition for a qualified sampling operator

full rank: linearly independent



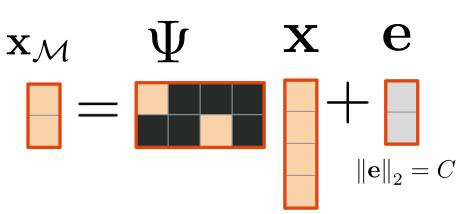
Sufficient condition for a qualified sampling operator

• Full rank $\operatorname{rank}(\Psi\operatorname{V}_{(K)})=K$

Optimal sampling operator

- Robust to noise
- Greedy algorithm

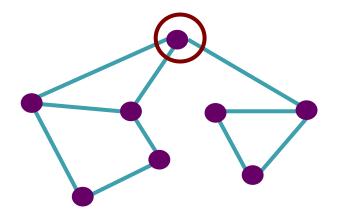
$$\Psi^{\text{opt}} = \arg\min_{\boldsymbol{\Psi}} \max_{\mathbf{x}} \|\Phi(\boldsymbol{\Psi} \mathbf{x} + \mathbf{e}) - \mathbf{x}\|_{2}$$
$$= \arg\min_{\boldsymbol{\Psi}} \|(\boldsymbol{\Psi} V_{(K)})^{\dagger}\|_{2}$$

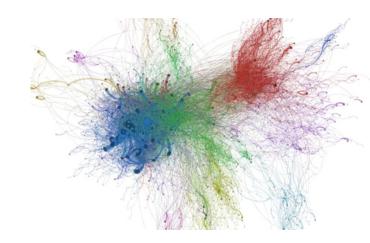


Sampling process

- Deterministic: Either choose a node or discard; Accurate
- Randomized: Sample nodes according to a distribution; fast, scalable
 - Fundamental limits of sampling ability

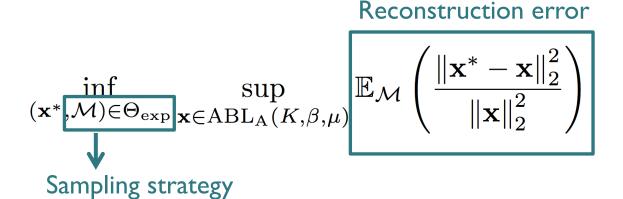
sampling probability π_i





Fundamental limits of sampling strategies $|\mathcal{M}|=m o\infty$

Minmax recovery error



Fundamental limits of sampling strategies $|\mathcal{M}|=m o\infty$

Minmax recovery error

$$cm^{-\gamma_1} \leq \inf_{(\mathbf{x}^*,\mathcal{M}) \in \Theta_{\mathrm{exp}}} \sup_{\mathbf{x} \in \mathrm{ABL}_{\mathrm{A}}(K,\beta,\mu)} \mathbb{E}_{\mathcal{M}} \left(\frac{\|\mathbf{x}^* - \mathbf{x}\|_2^2}{\|\mathbf{x}\|_2^2} \right) \leq Cm^{-\gamma_2}$$

$$\gamma_1 = \gamma_2$$
 Tight bound
• Lower bound: fundamental limits

- Upper bound: optimal algorithm

higher rate => faster decay => better sampling

Sampling process

- Fundamental limits of sampling strategies
 - Minmax recovery error
 - Lower bound
 - Sampling algorithm
 - Upper bound

active

experimentally

designed

uniform

& feedback-based sampling

$$\gamma_1 = \gamma_2 = \frac{2\beta}{2\beta + 1}$$

where constant C > 0, the rate is achieved when κ is in the order of $m^{1/(2\beta+1)}$ and upper bounded by N.

Corollary 6. Let $A \in \mathbb{R}^{N \times N}$ be a type-2 graph with parameter

Uniform sampling $^{(eta,\mu)}$

Under uniform sampling,

$$cm^{-\frac{2\beta}{2\beta+\gamma}}$$

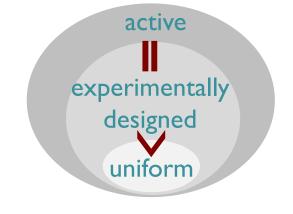
$$\gamma_1 = \gamma_2 = \frac{2\beta}{2\beta + \gamma}, \ \gamma > 1$$

where constant C>c>0, and the rate is achieved when κ is in the order of $m^{1/(2\beta+\gamma)}$ and $\gamma=\log(N)/\log(\kappa)\geq 1$:

Sampling process

- Fundamental limits of sampling strategies
 - Minmax recovery error
 - Lower bound
 - Sampling algorithm
 - Upper bound

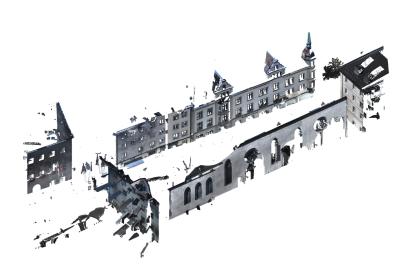
Optimal sampling distribution depends on properties of graph Fourier



S. Chen, R. Varma, A. Singh, J. Kovačević, "Signal Recovery on Graphs: Fundamental Limits of Sampling Strategies ", IEEE Transactions on Signal and Information Processing over Networks, 2016.

Applications

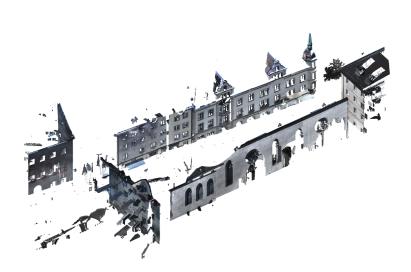
Resampling of 3D point clouds



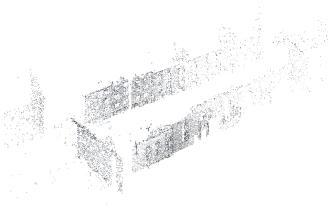
Over 30 million 3D points

Applications

Resampling of 3D point clouds



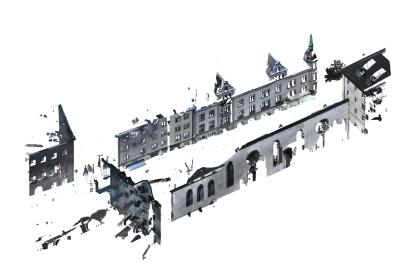
Over 30 million 3D points



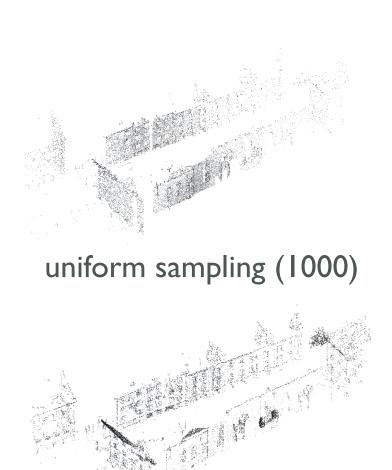
uniform sampling (1000)

Applications

Resampling of 3D point clouds

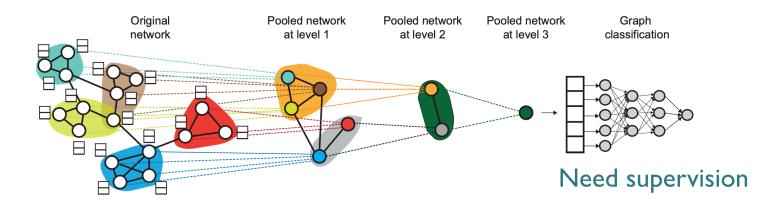


Over 30 million 3D points



designed sampling (1000)

Diffpool: Graph pooling in multiscale graph neural network

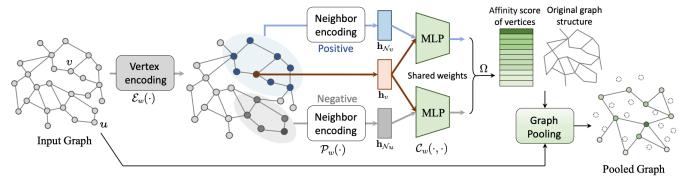


Trainable sampling operator $\Psi = \operatorname{softmax}(\operatorname{GNN}(A, \mathbf{x}))$

Data pooling $\mathbf{x'} = \Psi \mathbf{x}$

Structure pooling $A' = \Psi A \Psi^T$

Proposed graph pooling in multiscale graph neural network



Self-supervision / supervision

$$\max_{\mathcal{M} \subset \mathcal{V}} C(\mathcal{M}), \text{ subject to } |\mathcal{M}| = M.$$

Vertex-selection criterion

$$C(\mathcal{M}) = I^{(\mathcal{M})}(\mathbf{v}, \mathbf{n}) = D_{\mathrm{KL}}(P_{\mathbf{v}, \mathbf{n}} || P_{\mathbf{v}} \otimes P_{\mathbf{n}})$$

$$\geq \sup_{T \in \mathcal{T}} \left\{ \mathbb{E}_{\mathbf{s}_{v}, \mathbf{q}_{\mathcal{N}_{v}} \sim P_{\mathbf{v}, \mathbf{n}}} \left[T(\mathbf{s}_{v}, \mathbf{q}_{\mathcal{N}_{v}}) \right] - \mathbb{E}_{\mathbf{s}_{v} \sim P_{\mathbf{v}}, \mathbf{q}_{\mathcal{N}_{u}} \sim P_{\mathbf{n}}} \left[e^{T(\mathbf{s}_{v}, \mathbf{q}_{\mathcal{N}_{u}}) - 1} \right] \right\}$$

$$= \operatorname{Inode}_{\mathbf{mode}} \operatorname{neighborhood}_{\mathbf{feature}}$$

Experimental results

Graph classification

Dataset # Graphs (Classes) Avg. # Vertices	IMDB-B 1000 (2) 19.77	IMDB-M 1500 (3) 13.00	COLLAB 5000 (3) 74.49	D&D 1178 (2) 284.32	PROTEINS 1113 (2) 39.06	ENZYMES 600 (6) 32.63
PatchySAN [34]	76.27 ± 2.6	69.70 ± 2.2	43.33 ± 2.8	72.60 ± 2.2	75.00 ± 2.8	-
ECC [40]	-	-	67.79	72.54	72.65	53.50
Set2Set [20]	-	-	71.75	78.12	74.29	60.15
DGCNN [49]	70.00 ± 0.9	47.83 ± 0.9	73.76 ± 0.5	79.37 ± 0.9	73.68 ± 0.9	-
DiffPool [46]	70.40	47.83	75.84	80.64	76.25	62.53
Graph U-Net [19]	72.10	48.33	77.56	82.43	77.68	58.57
SAGPool [28]	72.80	49.43	78.52	82.84	78.28	60.23
AttPool [24]	73.60	50.67	77.04	79.20	76.50	59.76
StructPool [47]	74.70	52.47	74.22	84.19	80.36	63.83
GXN	77.30 ± 0.8	54.57 ± 0.9	80.62 ± 0.8	84.26 ± 1.3	80.38 ± 1.2	60.43 ± 1.0

Experimental results

Node classification

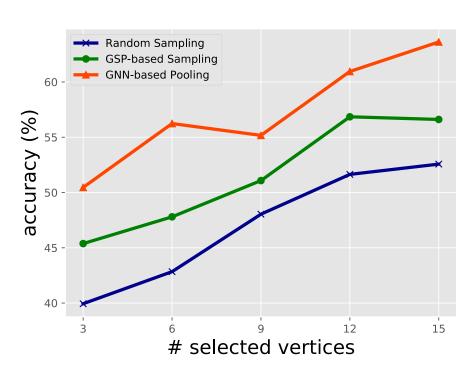
Dataset # Vertices (Classes)	Cora 2708 (7)		Citeseer 3327 (6)		Pubmed 19717 (3)	
Supervision	full-sup.	semi-sup.	full-sup.	semi-sup.	full-sup.	semi-sup.
DeepWalk [36]	78.4 ± 1.7	67.2 ± 2.0	68.5 ± 1.8	43.2 ± 1.6	79.8 ± 1.1	65.3 ± 1.1
ChebNet [10]	86.4 ± 0.5	81.2 ± 0.5	78.9 ± 0.4	69.8 ± 0.5	88.7 ± 0.3	74.4 ± 0.4
GCN [27]	86.6 ± 0.4	81.5 ± 0.5	79.3 ± 0.5	70.3 ± 0.5	90.2 ± 0.3	79.0 ± 0.3
GAT [43]	87.8 ± 0.7	83.0 ± 0.7	80.2 ± 0.6	73.5 ± 0.7	90.6 ± 0.4	79.0 ± 0.3
FastGCN [7]	85.0 ± 0.8	80.8 ± 1.0	77.6 ± 0.8	69.4 ± 0.8	88.0 ± 0.6	78.5 ± 0.7
ASGCN [25]	87.4 ± 0.3	-	79.6 ± 0.2	-	90.6 ± 0.3	-
Graph U-Net [19]	-	84.4	-	73.2	-	79.6
GXN	88.9 ± 0.4	$\textbf{85.1} \pm \textbf{0.6}$	80.9 ± 0.4	$\textbf{74.8} \pm \textbf{0.4}$	91.8 ± 0.3	80.2 ± 0.3

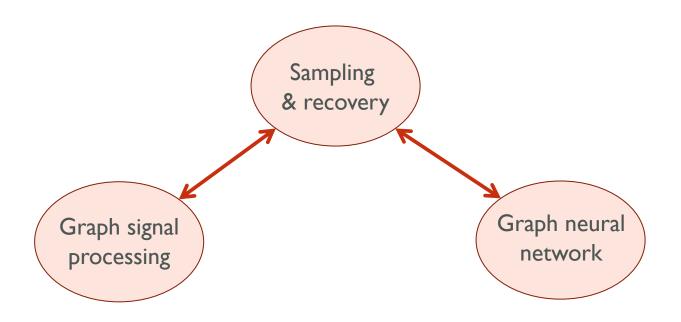
Experimental results

Active-sampling-based semi-supervised learning

Citeseer: 3327 nodes

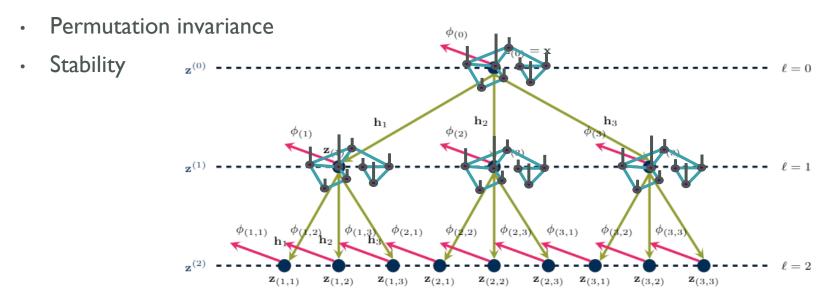
Pubmed: 19717 nodes





Graph scattering transforms are nontrainable GCNs

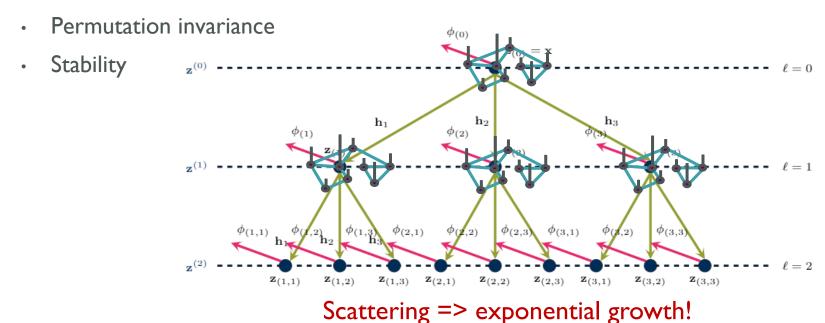
- Parameters of the graph convolutions are mathematically designed
- Theoretical property
 - Energy preservation



- Dongmian Zou, Gilad Lerman, "Graph Convolutional Neural Networks via Scattering", Applied and Computational Harmonic Analysis, 2019
- Fernando Gama, Alejandro Ribeiro, Joan Bruna, "Diffusion Scattering Transforms on Graphs" ICLR, 2019

Graph scattering transforms are nontrainable GCNs

- Parameters of the graph convolutions are mathematically designed
- Theoretical property
 - Energy preservation



- Dongmian Zou, Gilad Lerman, "Graph Convolutional Neural Networks via Scattering", Applied and Computational Harmonic Analysis, 2019
- Fernando Gama, Alejandro Ribeiro, Joan Bruna, "Diffusion Scattering Transforms on Graphs" ICLR, 2019

Main idea: a pruning framework to select informative features of the graph scattering transforms

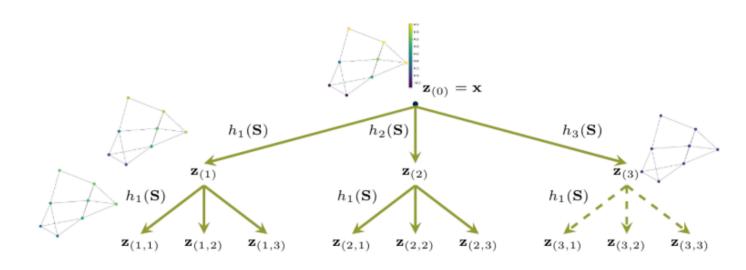
Optimal pruning

$$\max_{\{f_{(p,j)}\}_{j=1}^{J}} \quad \sum_{j=1}^{J} \left(\sum_{n=1}^{N} \left(\widehat{h}_{j}(\lambda_{n})^{2} - \tau \right) [\widehat{\mathbf{z}}_{(p)}]_{n}^{2} \right) f_{(p,j)}$$
s. t. $f_{(p,j)} \in \{0,1\}, \ j = 1, \dots, J$

Main idea: a pruning framework to select informative features of the graph scattering transforms

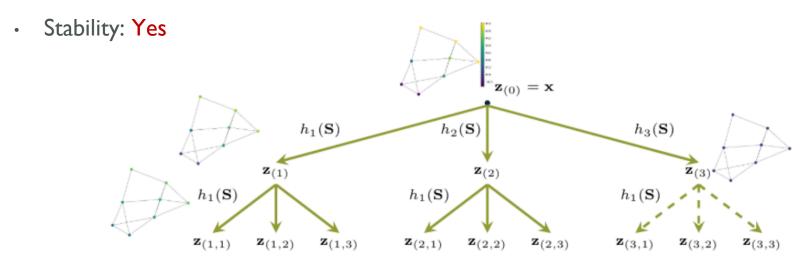
Optimal pruning

$$f^*_{(p,j)} = egin{cases} 1 & \textit{if} \, rac{\|\mathbf{z}_{(p,j)}\|^2}{\|\mathbf{z}_{(p)}\|^2} > au, \ 0 & \textit{if} \, rac{\|\mathbf{z}_{(p,j)}\|^2}{\|\mathbf{z}_{(p)}\|^2} < au. \end{cases}, \, j = 1, \dots, J$$



Main idea: a pruning framework to select informative features of the graph scattering transforms

- Optimal pruning
- Theoretical property
 - Energy preservation: No
 - Permutation invariance: ?

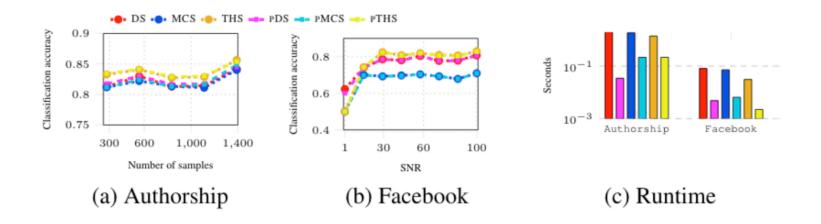


Main idea: a pruning framework to select informative features of the graph scattering transforms

	Method]			
	Witting	ENZYMES	D&D	COLLAB	PROTEINS
Kernel	SHORTEST-PATH	42.32	78.86	59.10	76.43
	WL-OA	60.13	79.04	80.74	75.26
GNNs	PATCHYSAN	_	76.27	72.60	75.00
	GRAPHS AGE	54.25	75.42	68.25	70.48
	ECC	53.50	74.10	67.79	72.65
	SET2SET	60.15	78.12	71.75	74.29
	SORTPOOL	57.12	79.37	73.76	75.54
	DIFFPOOL-DET	58.33	75.47	82.13	75.62
	DIFFPOOL-NOLP	62.67	79.98	75.63	77.42
	DIFFPOOL	64.23	81.15	75.50	78.10
Scattering	GSC	53.88	76.57	76.88	74.03
	GST	59.84	79.28	77.32	76.23
	PGST (Ours)	60.25	81.27	78.40	78.57

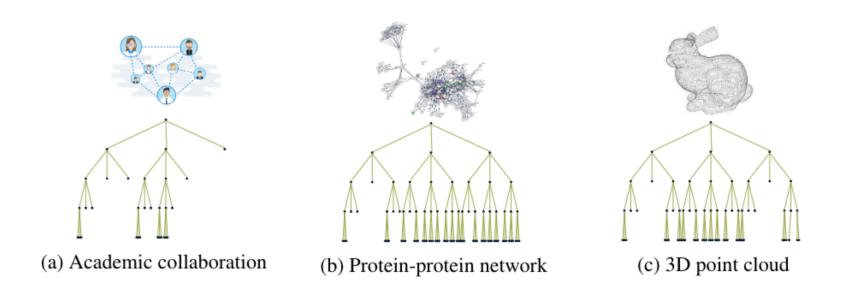
Mathematically designed framework is comparable with trained framework

Main idea: a pruning framework to select informative features of the graph scattering transforms



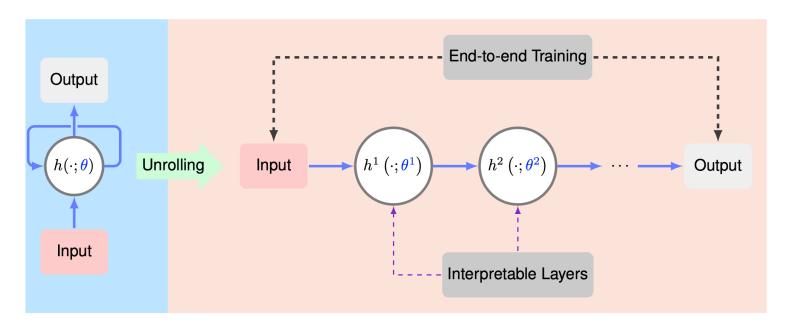
Similar performance, but 10 times faster!

Main idea: a pruning framework to select informative features of the graph scattering transforms



Pruning pattern reflects the complexity of dataset

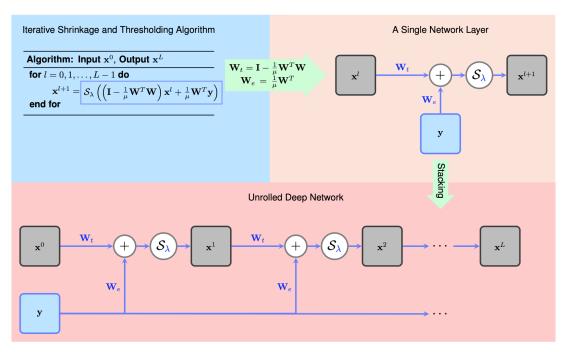
Algorithm unrolling framework: Transform an iterative algorithm to a multilayer neural network



Signal processing

Neural network

Algorithm unrolling framework: Transform an iterative algorithm to a multilayer neural network



Algorithm unrolling framework: Transform an iterative algorithm to a multilayer neural network

$$\min_{\mathbf{s} \in \mathbb{R}^N} \frac{1}{2} \|\mathbf{t} - \mathbf{x}\|_2^2 + u(\mathbf{y}) + r(\mathbf{z}),$$

subject to $\mathbf{x} = \mathbf{h} *_v \mathbf{s}, \quad \mathbf{y} = P \mathbf{x}, \quad \mathbf{z} = Q \mathbf{s}$

Analytical iterative solution

One network layer

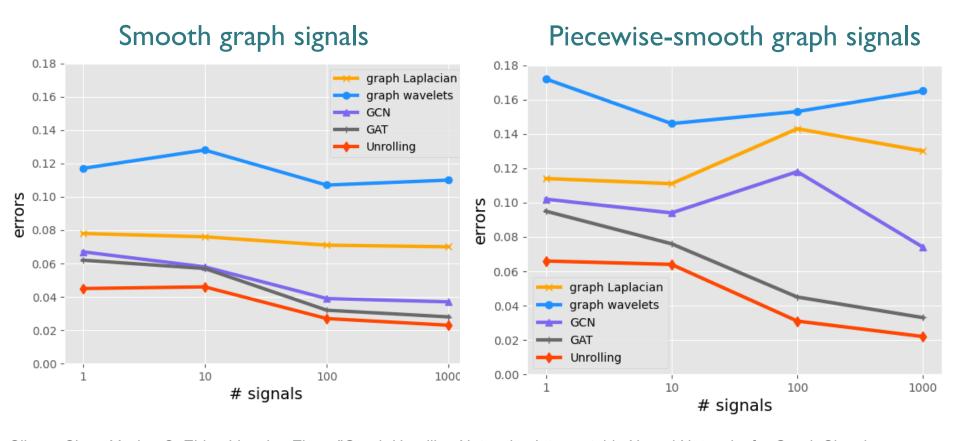
$$\mathbf{x} \leftarrow \widetilde{\mathbf{P}} \left(\mu_{1} \mathbf{h} *_{v} \mathbf{s} + \mathbf{t} + \mu_{2} \mathbf{P}^{T} \mathbf{y} \right), \longleftrightarrow \mathbf{x} \leftarrow \mathbb{A} *_{a} \mathbf{s} + \mathbb{B} *_{a} \mathbf{t} + \mathbb{C} *_{a} \left(\mathbf{P}^{T} \mathbf{y} \right)$$

$$\mathbf{s} \leftarrow \widetilde{\mathbf{Q}} \left(\mu_{1} \mathbf{h} *_{v}^{T} \mathbf{x} + \mu_{3} \mathbf{Q}^{T} \mathbf{z} \right), \longleftrightarrow \mathbf{s} \leftarrow \mathbb{D} *_{a} \mathbf{x} + \mathbb{E} *_{a} \left(\mathbf{Q}^{T} \mathbf{z} \right)$$

$$\mathbf{y} \leftarrow \arg \min_{\mathbf{y}} \frac{\mu_{2}}{2} \|\mathbf{y} - \mathbf{P} \mathbf{x}\|_{2}^{2} + u(\mathbf{y}), \longleftrightarrow \mathbf{y} \leftarrow \mathrm{NN}_{u} \left(\mathbf{P} \mathbf{x} \right)$$

$$\mathbf{z} \leftarrow \arg \min_{\mathbf{z}} \frac{\mu_{3}}{2} \|\mathbf{z} - \mathbf{Q} \mathbf{s}\|_{2}^{2} + r(\mathbf{z}), \longleftrightarrow \mathbf{z} \leftarrow \mathrm{NN}_{r} \left(\mathbf{Q} \mathbf{s} \right)$$

Denoising of graph-structured data



Conclusions

Graph-structured data science

- Graph signal processing (GSP)
- Graph neural network (GNN)

Sampling and recovery of graph-structured data

- GSP: Mathematically designed graph sampling operator
- GNN: Trainable graph pooling operator

- Graph scattering transform
- Graph unrolling network

Thank you!