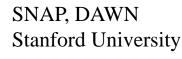
Graph Neural Networks Meet Embedding Geometry

Speaker: Rex Ying*

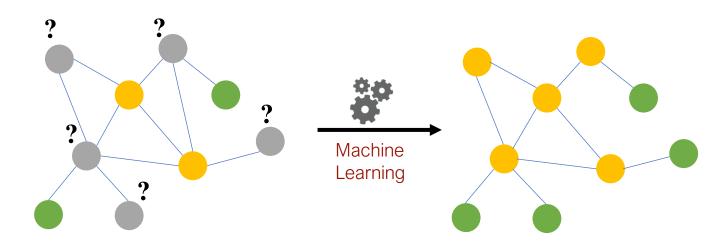
Collaborators: Andrew Wang, Ines Chami, Jiaxuan You, Zhaoyu Lou, Christopher Ré, Jure Leskovec, Siemens Inc.



Representation Learning for Graphs

- Representation Learning on graph structured data
 - Node classification; link prediction
 - Graph and subgraph-level predictions

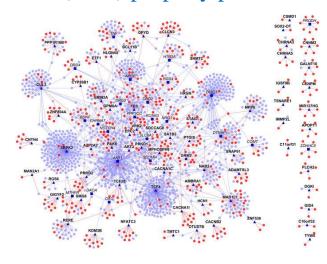
Example Node classification:



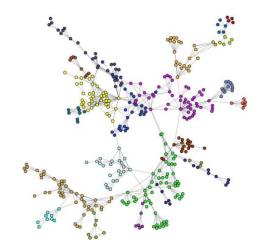
Representation Learning for Graphs

- Example applications
 - Biological networks classify protein functions in interactome
 - Social networks predict interactions between people
 - Molecules predict properties of molecules and functional groups (subgraphs)

Protein (node) property prediction



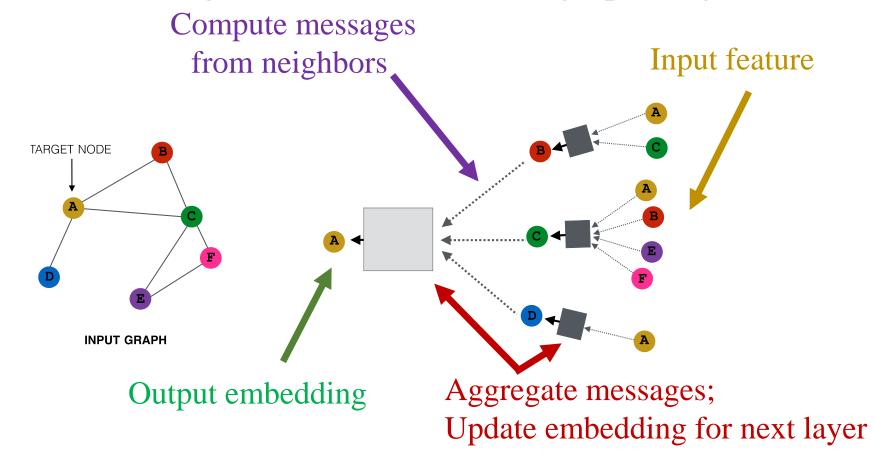
Predict links in social network



Predict molecular properties

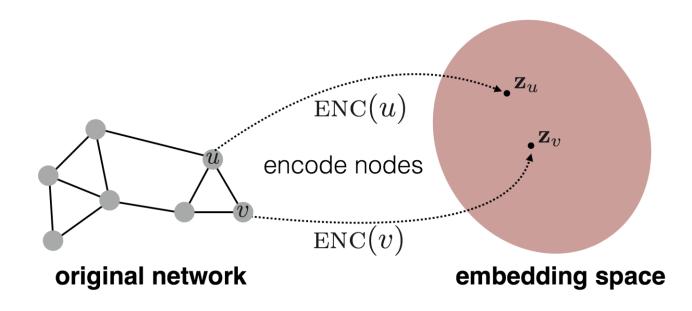
Graph Neural Networks (GNNs)

• Generate node embeddings based on local message-passing



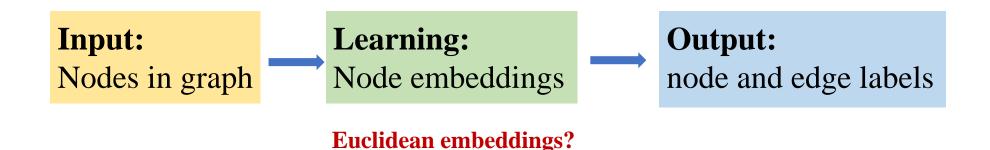
Motivation: Leverage Embedding Geometry

- Existing GNNs embed nodes / links into a Euclidean vector space
- Standard classification toolkit is available for Euclidean embeddings

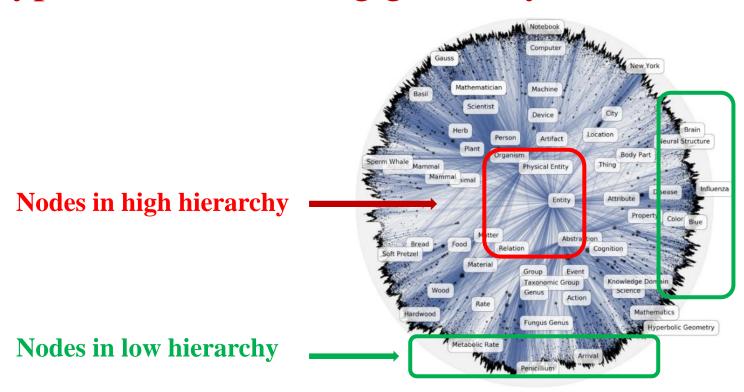


Motivation: Leverage Embedding Geometry

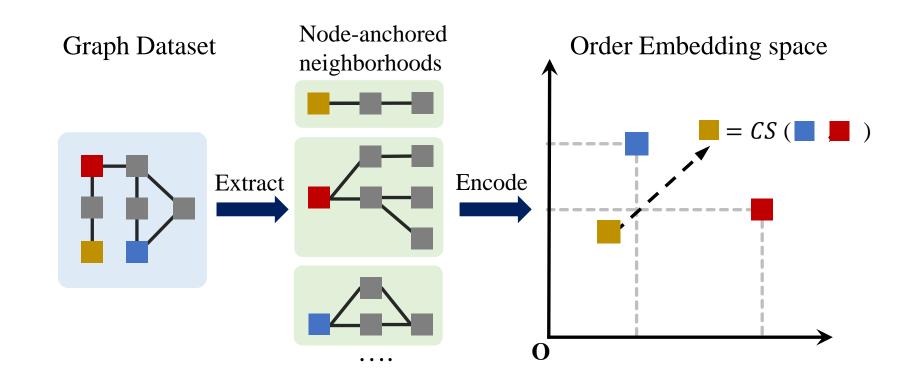
- How to learn high-quality embeddings for graphs?
 - Graph Neural Network (GNN) architecture is shown to have high expressive power (Hu *et al.* 2018).
 - Geometry of the embedding space is crucial in learning high-quality embeddings.



- Hyperbolic Convolutional Neural Networks
 - > Hyperbolic embedding geometry for hierarchy modeling



- Neural Subgraph Matching
 - ➤ Order embedding geometry for partial ordering

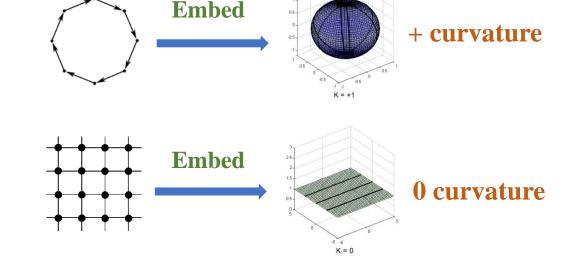


Hyperbolic Graph Convolutional Neural Networks

Neural Subgraph Matching

Motivation

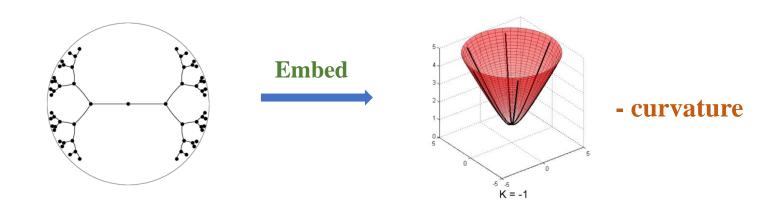
- Space curvature: deviation from Euclidean space
 - Departure from Pythagoras theorem (positive curvature: $x^2 + y^2 < z^2$)
- Graphs with many large cycles
 - Best with spherical space embeddings
- Grid-like graphs
 - Best with **Euclidean** space embeddings



- Hierarchical, tree-like graphs?
 - We present **Hyperbolic Graph Convolutional Neural Networks** (NeurIPS 2019)

Motivation

- Hierarchical, tree-like graphs
 - Sparse graphs with low number of cycles
 - Exponential growth in number of children

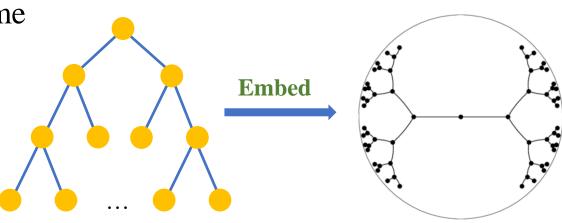


Motivation

- Suppose that we want to embed a tree
 - Exponential number of children
- Euclidean embedding cannot preserve shortest path metric
 - Quadratic growth in Euclidean volume w.r.t. radius
- Hyperbolic space

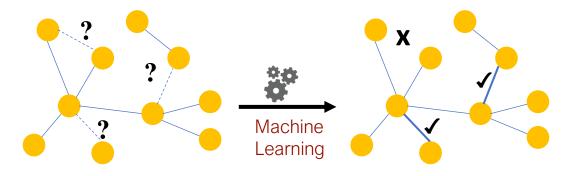
• Exponential growth in hyperbolic volume

• Problem aligns with geometry!

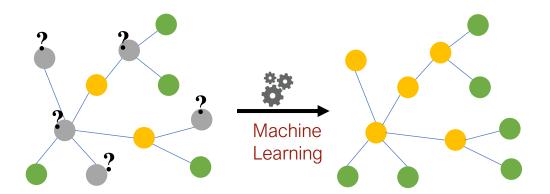


• Graph representation learning on hierarchical, tree-like graphs

• Link Prediction:



• Node Classification:



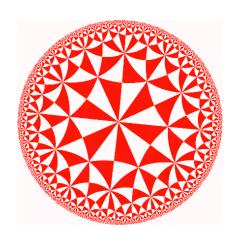
Hyperbolic GNNs

- Graph representation learning on hierarchical graphs
 - Link Prediction
 - Node Classification
- Graph Neural Networks (GNNs) achieve state-of-the-art in these tasks

Can we use GNN to learn hyperbolic embeddings for hierarchical graphs?

Background: Hyperbolic Space

- Poincaré Model
 - Radius proportional to \sqrt{K} (inverse of curvature)
 - Open ball (exclude boundary)
 - Each triangle in the figure has the **same** area
 - Intuitive 2D visualization
- Hyperboloid Model (Lorentz Model)
 - Upper sheet of 2-sheet hyperboloid
 - Subset of Euclidean space
 - Numerically more stable, simpler formula



Poincaré Model

Hyperboloid Model

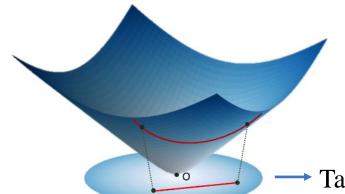
Tangent Space

• Hyperboloid model:

• Constant Minkowski inner product $\langle .,. \rangle_{\mathcal{L}} : \mathbb{R}^{d+1} \times \mathbb{R}^{d+1} \to \mathbb{R}$ $\langle \boldsymbol{x}, \boldsymbol{y} \rangle_{\mathcal{L}} = -x_0 y_0 + x_1 y_1 + ... + x_d y_d = -\frac{1}{K} (K > 0)$

• Tangent space:

$$\mathcal{T}_{x}\mathbb{H}^{d,K} = \{ \boldsymbol{v} \in \mathbb{R}^{d+1} : \langle \boldsymbol{v}, \boldsymbol{x} \rangle_{\mathcal{L}} = 0 \}$$



d: hyperbolic space dimension

K: negative inverse of curvature

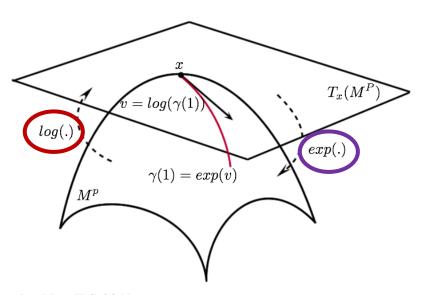
Tangent space at **north pole** $\mathcal{T}_{\mathbf{o}}\mathbb{H}^{d,K}$

Tangent Map

• Exponential map: from tangent space (Euclidean) to manifold

• Logarithmic map: inverse operation of exponential map

• See paper for derivation and formula

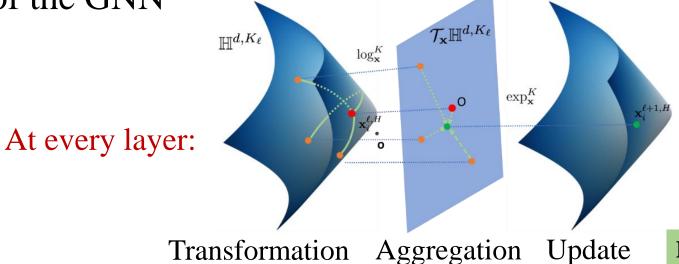


Method Overview

- Derive the core operations of GNN in the hyperbolic space
- Introduce a hyperbolic attention-based aggregation scheme that captures node hierarchies

• Use hyperbolic spaces of different trainable curvatures at different

layers of the GNN



How is each implemented?

Input Transformation

- Input features are mapped to hyperbolic space via exp map
- Assuming the features lie on the tangent space at north pole

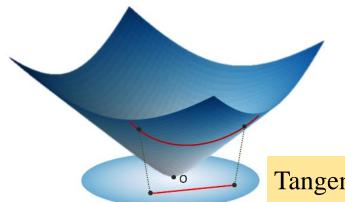
$$x^{0,H} = \exp_o^K((0,x^{0,E}))$$
Hyperbolic embedding (H)
at layer 0

Tangent space (Euclidean)
embedding projection (E)
at layer 0

Input Transformation

- Input features are mapped to hyperbolic space via exp map
- Assuming the features lie on tangent space at north pole

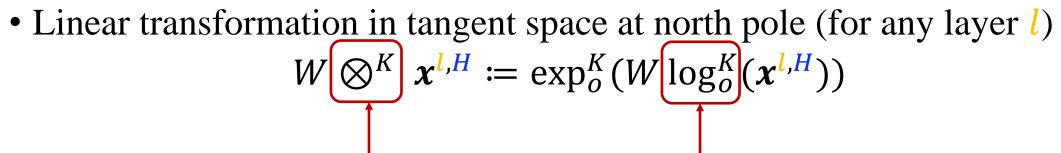
$$\boldsymbol{x}^{0,H} = \exp_o^K((0,\boldsymbol{x}^{0,E}))$$



Exponential map from tangent space at north pole o to hyperbolic space with curvature -1/K

Tangent space at **north pole**

GNN Message Computation - Transformation



Hyperbolic transformation notation

Tangent space projection

- W : Euclidean parameters
- See paper for bias addition

Message Aggregation

• Attention value computed at tangent space of north pole

$$\omega_{ij} = \operatorname{Softmax}_{j \in \mathcal{N}(i)} \{ \operatorname{MLP} \left(\log_o^K (\boldsymbol{x}_i^H) \parallel \log_o^K (\boldsymbol{x}_j^H) \right) \}$$

Attention of node *i* to node *j*

Concat tangent space projections

- Allows model to compute attention according to the node's hierarchy in the entire graph
- Attention-based aggregation

$$AGG(x^{H})_{i} := \exp_{x_{i}^{H}}^{K} \left(\sum_{j \in \mathcal{N}(i)} \omega_{ij} \log_{x_{i}^{H}}^{K} (x_{j}^{H}) \right)$$

Embedding Update

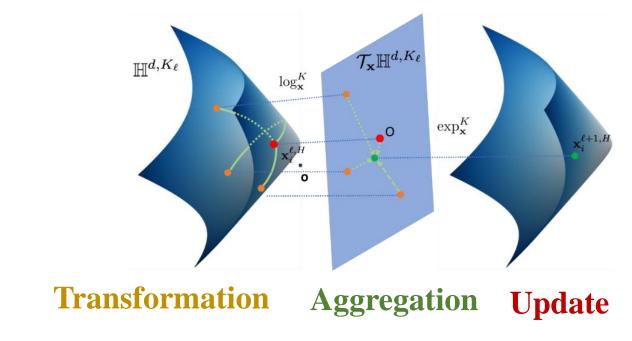
- Update $x^{l,H}$ with messages to get next layer embedding: $x^{l+1,H}$
- Apply non-linear activation σ to tangent space projection: $\log_{\sigma}^{K_{l-1}}(x^{l,H})$
- Use exp map to map back to hyperboloid, with different curvature K_l
- All curvatures K_l are trainable!

$$Update^{K_{l-1},K_l}(x^{l,H}) := \exp_o^{K_l}(\sigma(\log_o^{K_{l-1}}(x^{l,H})))$$

Model Summary

• At every layer $l = 1 \dots L$,

(See paper for Equations)



- Decode after computing the hyperbolic embeddings $x_i^{L,H}$
 - Node classification: softmax + cross entropy
 - Link prediction: Fermi-Dirac decoder

Experiments

- Citation networks. CORA and PUBMED are standard benchmarks describing citation networks
- Disease networks (synthetic). We simulate the SIR disease spreading model, where the label of a node is whether the node was infected.
- PPI network. Each human tissue has a PPI network, and the dataset is a union of PPI networks for human tissues
- Airport networks. Nodes represent airports and edges represent the airline routes.
- Scale: up to 100K nodes (see paper for data statistics)

Evaluation

- We perform link prediction and node classification for each dataset
- Link prediction: AUC ROC
- Node classification: F1 score

Methods

- Proposed: hyperbolic graph convolutional networks (HGCN)
 - Use derived hyperbolic message passing on GCN model
- Baselines
 - Poincaré embedding (shallow embedding)
 - Hyperbolic neural networks (no graph information)
 - GNN variants (Euclidean)
 - GCN, GAT, GraphSAGE, SGC

Results

Node classification

CORA: 2708 ML papers, 7 classes

HGCN performs much better in low dimensions (visualize with 2 dim)

With 2-dimensional Embedding

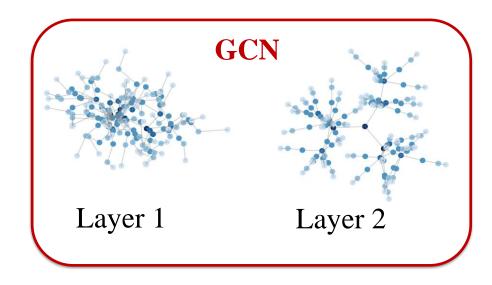
HGCN: nodes clustered by label

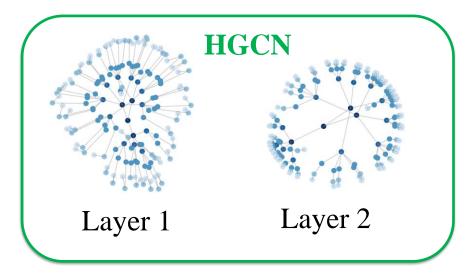
Results

Node Classification (tree)

Disease: 1044 nodes, 2 classes

Whether a person is infected according to FIR disease spreading model





Low distortion!

Quantitative Results

• LP: link prediction; NC: node classification

	Dataset	DISE	EASE	DISE	ASE-M	Ним	AN PPI
	Hyperbolicity δ	$\delta = 0$		$\delta = 0$		δ	= 1
	Method	LP	NC	LP	NC	LP	NC
Shallow	Euc	59.8 ± 2.0	32.5 ± 1.1	-	-	-	-
	HYP [29]	63.5 ± 0.6	45.5 ± 3.3	-	Induct	ivo toc	lza -
	EUC-MIXED	49.6 ± 1.1	35.2 ± 3.4	-	Induct	ive tas	KS _
	Hyp-Mixed	55.1 ± 1.3	56.9 ± 1.5	-	-	-	
Z	MLP	72.6 ± 0.6	28.8 ± 2.5	55.3 ± 0.5	55.9 ± 0.3	67.8 ± 0.2	55.3±0.4
	HNN[10]	75.1 ± 0.3	41.0 ± 1.8	60.9 ± 0.4	56.2 ± 0.3	72.9 ± 0.3	59.3 ± 0.4
CNN	GCN[21]	64.7 ± 0.5	69.7 ± 0.4	66.0 ± 0.8	59.4 ± 3.4	77.0 ± 0.5	69.7 ± 0.3
	GAT [41]	69.8 ± 0.3	70.4 ± 0.4	69.5 ± 0.4	62.5 ± 0.7	76.8 ± 0.4	70.5 ± 0.4
	SAGE [15]	65.9 ± 0.3	69.1 ± 0.6	67.4 ± 0.5	61.3 ± 0.4	78.1 ± 0.6	69.1 ± 0.3
	SGC [44]	65.1 ± 0.2	69.5 ± 0.2	66.2 ± 0.2	60.5 ± 0.3	76.1 ± 0.2	71.3 ± 0.1
Ours	HGCN	90.8 ± 0.3	74.5 \pm 0.9	78.1 \pm 0.4	72.2 \pm 0.5	84.5 ± 0.4	74.6 \pm 0.3
	(%) Err Red	-63.1%	-13.8%	-28.2%	-25.9%	-29.2%	-11.5%

Hyperbolicity measures how tree-like is a graph
Low hyperbolicity: more tree-like

Average gain:

- 9% in link prediction
- 7% in node classification

Quantitative Results

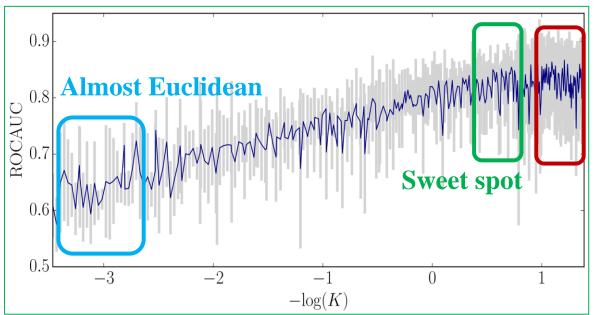
• Hyperbolicity measure correlates with HGCN performance

	$ \begin{array}{l} \textbf{Dataset} \\ \textbf{Hyperbolicity} \ \delta \end{array} $	100	MED 3.5	$\delta = 0$	The state of the s
	Method	LP	NC	LP	NC
Shallow	EUC HYP [29] EUC-MIXED HYP-MIXED	83.3 ± 0.1 87.5 ± 0.1 86.0 ± 1.3 83.8 ± 0.3	48.2 ± 0.7 68.5 ± 0.3 63.0 ± 0.3 73.9 ± 0.2	82.5 ± 0.3 87.6 ± 0.2 84.4 ± 0.2 85.6 ± 0.5	23.8 ± 0.7 22.0 ± 1.5 46.1 ± 0.4 45.9 ± 0.3
NN	MLP HNN[10]	84.1 ± 0.9 94.9 ± 0.1	72.4 ± 0.2 69.8 ± 0.4	83.1 ± 0.5 89.0 ± 0.1	51.5 ± 1.0 54.6 ± 0.4
GNN	GCN[21] GAT [41] SAGE [15] SGC [44]	91.1 ± 0.5 91.2 ± 0.1 86.2 ± 1.0 94.1 ± 0.0	78.1 ± 0.2 79.0 ± 0.3 77.4 ± 2.2 78.9 ± 0.0	90.4 ± 0.2 93.7 ± 0.1 85.5 ± 0.6 91.5 ± 0.1	81.3 ± 0.3 83.0 ± 0.7 77.9 ± 2.4 81.0 ± 0.1
LS	HGCN	96.3 ± 0.0	80.3 ± 0.3	92.9 ± 0.1	79.9 ± 0.2
Ours	(%) Err Red	-27.5%	-6.2%	+12.7%	+18.2%

Non-hierarchical dataset (low hyperbolicity)

Effect of Curvature

- Curvature is crucial to performance
- *E.g.* Disease dataset link prediction:

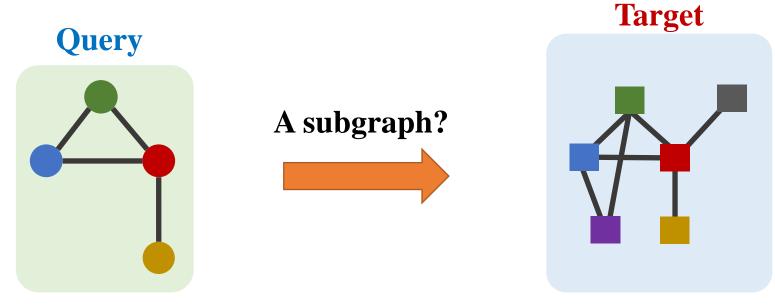


Too hyperbolic (unstable)

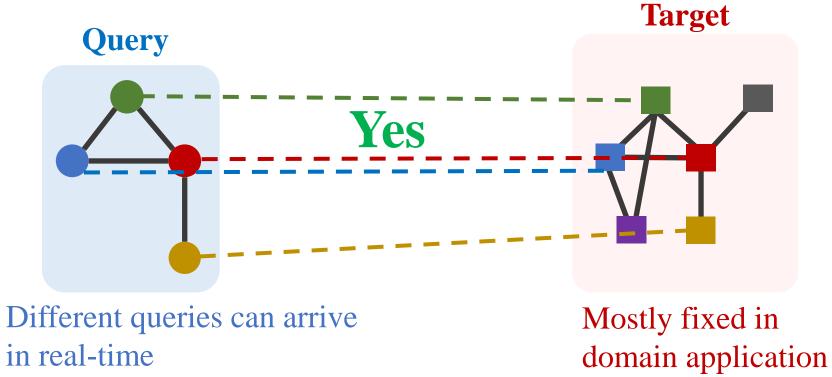
Hyperbolic Graph Convolutional Neural Networks

Neural Subgraph Matching

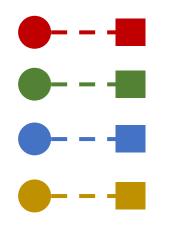
- Large target graph (can be disconnected)
- Query graph (connected)

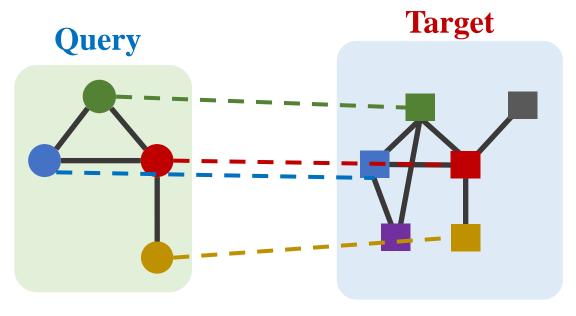


- Large target graph (can be disconnected)
- Query graph (connected)



- Desired output
 - Whether subgraph relation holds
 - Locate the subgraph (Identify the query in a neighborhood of target)
 - Find all correspondences



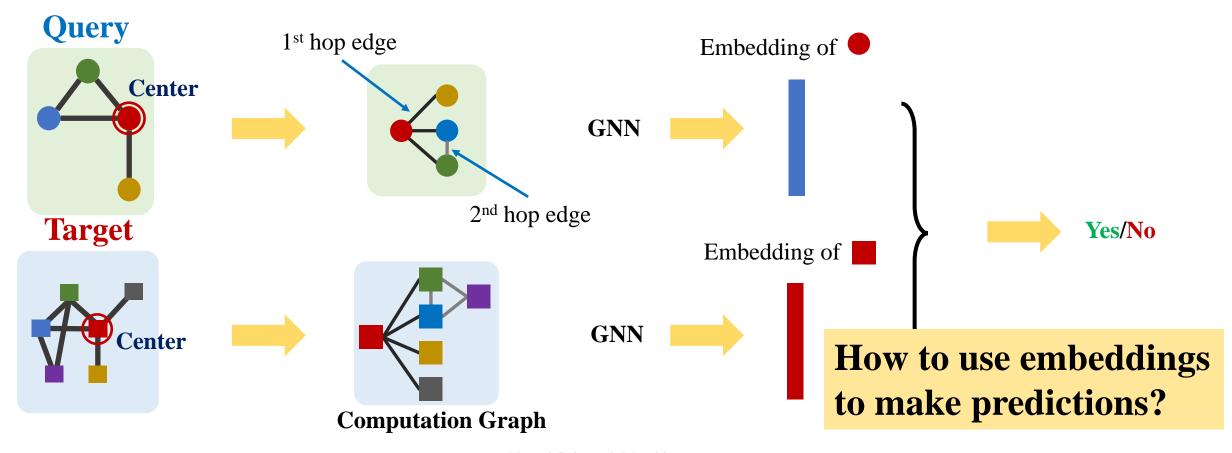


Challenges

- NP-Complete Problem
- Existing solutions
 - Heuristics-based (exponential time in worst case)
 - Approximation (domain-specific)
- Can we use neural models to learn a subgraph matching strategy?
 - High accuracy approximation
 - Leverage inductive bias of datasets
 - No hand-designed heuristics
 - Unexplored by previous works (the closest is neural graph isomorphism)

NeuroMatch Architecture

• Siamese Graph Neural Network Structure



Order Embedding Space

• Embedding space: Euclidean space (e.g. 64 dim)

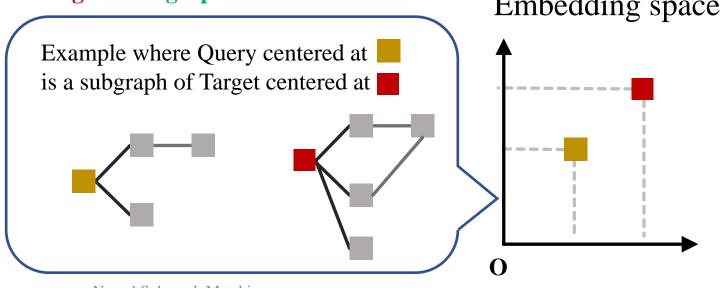
• Order constraint Embedding dimension $\forall_{i=1}^D z_q[i] \leq z_u[i] \quad \text{ iff } \quad G_Q \subseteq G_U \quad \text{ trained with max-margin loss }$

Query embedding Target embedding

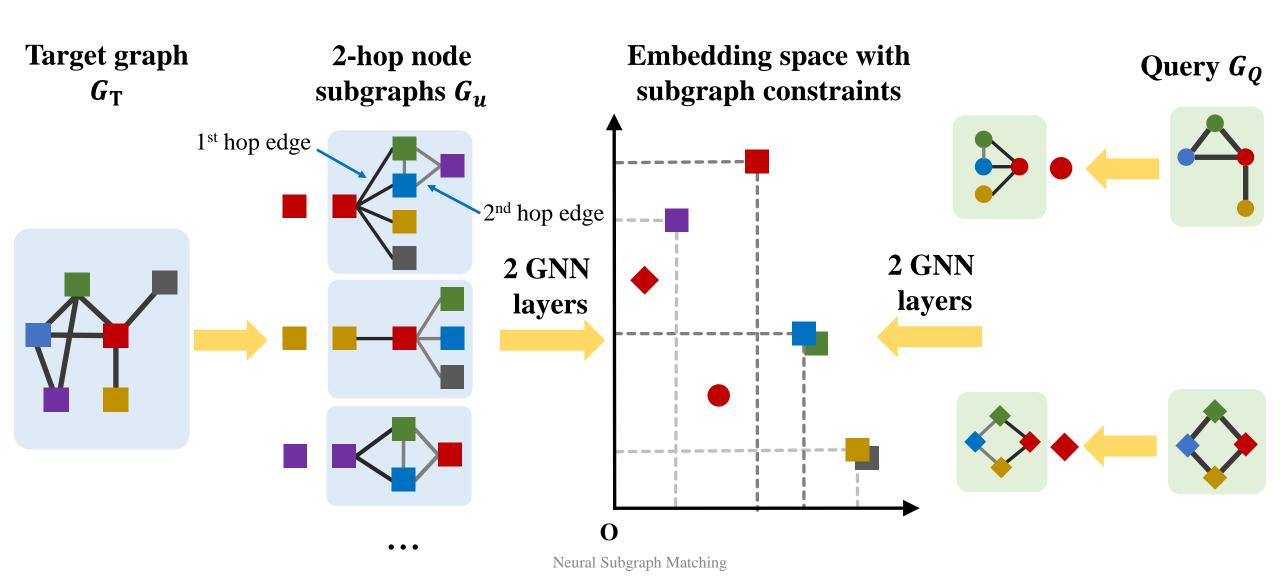
Subgraph Relation

Embedding space

- ✓ Anti-symmetry
- ✓ Non-empty intersection
- ✓ Composition



Final Model Summary



Performance: Model Comparison

• Metric: AUROC

• Order embedding achieves 4% relative gains in accuracy of the binary prediction of subgraph relationship

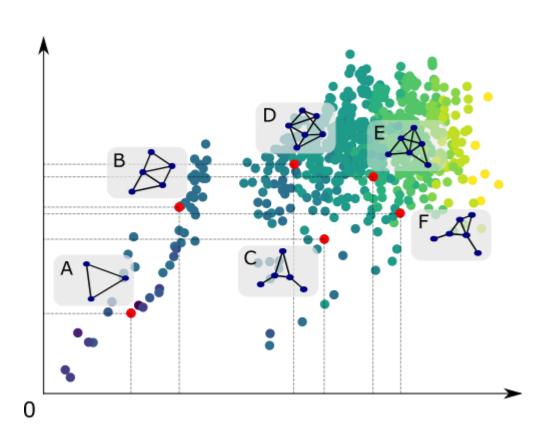
Dataset	E-R	COX2	DD	MSRC_21	FIRSTMMDB	PPI	WORDNET18
GMNN [33]	73.6 ± 1.1	75.9 ± 0.8	80.6 ± 1.5	82.5 ± 1.7	81.5 ± 2.9	72.0 ± 1.9	80.3 ± 2.0 79.6 ± 2.5
RDGCN [31]	79.5 ± 1.2	80.1 ± 0.4	81.3 ± 1.2	81.9 ± 1.9	82.4 ± 3.4	76.8 ± 2.2	
NO CURRICULUM	82.4 ± 0.6	95.0 ± 1.6	96.7 ± 2.1	89.2 ± 2.0	87.2 ± 6.8	82.6 ± 1.7	81.4 ± 2.2
NM-MLP	88.7 ± 0.5	95.4 ± 1.6	98.4 ± 0.3	93.5 ± 1.0	92.9 ± 4.3	85.5 ± 1.4	87.9 ± 1.2
NM-NTN	89.1 ± 1.9	89.3 ± 0.9	96.4 ± 1.4	94.7 ± 3.2	89.6 ± 1.1	85.7 ± 2.4	85.0 ± 1.1
NM-Box	84.5 ± 2.1	88.5 ± 1.2	91.4 ± 0.5	90.8 ± 1.4	93.8 ± 1.8	77.4 ± 3.1	82.7 ± 2.5
NEUROMATCH	93.5 ± 1.1	97.2 ± 0.4	97.5 ± 1.2	96.1 \pm 0.2	95.5 ± 2.1	89.9 ± 1.9	89.3 ± 2.4

Performance: Generalization

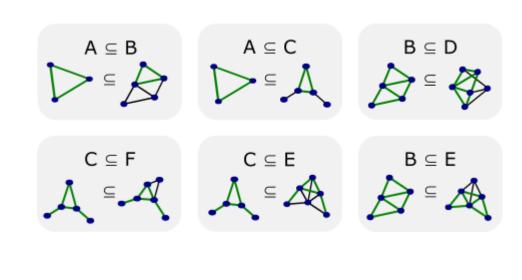
- Metric: AUROC
- Model trained only on synthetic data can generalize to real datasets from diverse domains
- Demonstrates universality of order embedding space

Dataset	ENZYMES	COX2	AIDS	PPI	IMDB-BINARY
TRANSFER	78.9	93.9	92.2	81.0	74.2
In-Domain	92.9	95.1	94.3	84.5	81.8

Visualization: Order Embedding Space



Subgraph relation preserved by embedding order relation



Conclusion

- Combine both GNN architecture and embedding geometry to achieve best performance
- Embedding geometry is crucial in learning embeddings for graphs
 - Hyperbolic embedding: Hierarchical, tree-like graphs
 - Order embedding: partial ordering structure

Thank you!