Math 994-002: Applied and Computational Harmonic Analysis, MSU, Spring 2020

Lecture 27 & 28: 2D Directional Wavelet Frames
April 21 & 23, 2020

Lecturer: Matthew Hirn

6.2.1 Dyadic Maxima Representation
Section 6.2.2 of A Wawvelet Tour of Signal Processing

Let us now return to the analysis of pointwise singularities of signals f via the decay of
Wf(u,s) as s — 0. Let 1) be a real valued wavelet, and recall that a wavelet modulus
maxima is defined as a point (ug, sg) such that |W f(u, so)| is locally maximum at u = wuo.

All of the results regarding wavelet coefficient decay and the pointwise regularity of f(¢)
(including, in particular, Theorems 5.5, 5.7, and 5.8) hold for dyadic wavelet semi-discrete
frames by restricting s = 27 for j € Z. Let (ug, ) be a modulus maxima point of W f(u, j),
meaning that

O () = 0 (s1)
Since W f(u,7) = f x;(u), ¥;(t) = 279 (—277t) and

d

Sy(t) = —279279! (—270t) = —27T (1)

equation (81) is equivalent to o
J* ¢/j<uo) =0
Figure 34 shows the dyadic wavelet transform of a signal and the corresponding wavelet

modulus maxima.
Let A denote the wavelet modulus maxima of f:

A={(uj) ERXZ: f+,(u) =0}
Recall that the dictionary D of a dyadic wavelet transform is:

D= {wu,j}(u,j)eRxZ

The set A defines a sub-dictionary of D:

Da = {¥ujtwien
Furthermore, the completion of the span of D, defines a closed subspace V, of L?(R):

V) = spanDy
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Figure 34: (a) The signal f(¢). (b) Dyadic wavelet transform computed with a wavelet
1 = —0'. (¢) Modulus maxima of the dyadic wavelet transform.



We can therefore project f onto V. Doing so amounts to computing an approximation
fa of f which is the signal synthesized from only the wavelet modulus maxima of f. It is
computed with a dual synthesis as:

fA:PVAf: Z <f7wu,j>77’;u,j

(u,j)EA

For general dyadic wavelets, fy # f. However, signals with the same modulus maxima differ
from each other by small amplitude errors introducing no oscillations, so in numerical experi-
ments fy =~ f. If fis band-limited (meaning it has a compactly supported Fourier transform)
and 1 is as well, then the wavelet modulus maxima define a complete representation of f
and in this case fy = f.

Figure 35 computes the projection f, for the signal first introduced in Figure 34. The
signal is not bandlimited, so the reconstruction is not perfect. However, Figure 35(b) shows
that the approximation is quite good, and the relative error is approximately 2.5%. Figure 35
reconstructs the signal using only the top 50% of the wavelet modulus maxima coefficients.
The sharpest signal transitions have been preserved, since they have the largest amplitude
responses, however small texture variations are removed since the wavelet modulus maxima
there have relatively small amplitudes. The resulting signal appears to be piecewise regular.
In either case, we have achieve a lossy compression of f in which there is a large compression
and the loss is not too large.

Exercise 73. Read Section 6.2.2 of A Wavelet Tour of Signal Processing.

6.3 Multiscale Directional Frames for Images

Section 5.5 of A Wawvelet Tour of Signal Processing.

6.3.1 Directional Wavelet Frames
Section 5.5.1 of A Wawvelet Tour of Signal Processing.

We now consider two dimensional wavelet semi-discrete frames for image analysis. Such
semi-discrete frames are constructed with wavelets that have directional sensitivity, providing
information on the direction of sharp transitions such as edges and textures.

Let * = (z1,75) € R? A directional wavelet ¥, (z) of angle a € [0,27) is a wavelet
having p directional vanishing moments along any one dimensional line of direction o + 7/2
in the plane but does not have directional vanishing moments along the direction «. The
former condition means that:

/¢a(pcosa —usina, psina +ucosa)u*du=0, VpeR, 0<k<p
R
Such a wavelet oscillates in the direction o + 7/2 but not in the direction a.
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Figure 35: (a) The signal f(t). (b) Signal approximation f,(¢) using the dyadic wavelet
modulus maxima shown in Figure 34. (c) Approximation recovered using only the largest
50% of the wavelet modulus maxima.



Let © C [0, 7) denote the set of angles «. Typically © is a uniform sampling:
O={a=21k/K:0<k< K}

The generators of a translation invariant dictionary are the dyadic dilations of each direc-
tional wavelet:

{Vjatjez,aco,  Vjalr) =279 (2772)
Often the directional wavelets 1), are obtained by rotating a single mother wavelet 1; we will
come back to this shortly when we define two dimensional Gabor and Morlet wavelets. For

real valued directional wavelets, Theorem 6.7 proves that the generating wavelets generate
a semi-discrete frame if and only if there exists 0 < A < B < oo such that

A< S Wa(@w))? < B, YweR*\{(0,0)}

JEZL a€®

If the generating wavelets 1, are complex valued analytic wavelets, then they generate a
semi-discrete frame if and only if

24 < D aW)P+ )0 a(—2w)P < 2B, YweR*\{(0,0)}  (82)

JEZ acd jeZ ac®

When the above semi-discrete frame conditions holds, the dyadic directional wavelet
transform is a map W : L*(R?) — £*(L?(R?)) defined as:

Wf={f*vja(u):j €L a €O, ueRY, Vja(z)=1v;.(—2)

A wavelet 1, j (1) = ¥ o(x — u) has support dilated by 27, located in a neighborhood of u
and oscillates in the direction a + 7/2. If f(x) is constant over the support of ©; ,(x — u)
along lines of direction o + /2, then f x @m(u) = 0 because of its directional vanishing
moments. In particular, the wavelet coefficient vanishes in the neighborhood of an edge
having a tangent in the direction of a+ /2. If the edge angle deviates from «+ /2, then it
produces large amplitude coefficients, with a maximum typically when the edge has direction
a. Figure 36 illustrates the idea.

Two dimensional Gabor wavelets are directional wavelets generated from a single complex
valued mother wavelet. The mother wavelet is defined as:

U(x) = go()e”

where £ = (£,&) € R? is the central frequency of 1 and g(z) is a Gaussian, which we take

as
o) = el /2e”

The mother Gabor wavelet oscillates along the angle arccos(&;/|¢]), and thus in the more

general language of directional wavelets it has angle ov = arccos(&;/|€|) — 7/2. The Fourier

transform of 1 is

2mo?

-~

b(w) = o0 lw—¢l?/2
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Figure 36: A cartoon image of a disk, with a regular edge. When the wavelet direction «
is orthogonal to the tangent of the edge, the coefficients vanish as indicated by the black
wavelet response (ap). When the wavelet direction « aligns with the tangent of the curve
(as on the left with ay), the wavelet coefficients have large amplitude. When the tangent
of the curve is not aligned with the wavelet, but is not orthogonal either (as in a3 and «}),
wavelet coefficients may have non-negligible amplitude but generally not as large as the o
coefficients.

For appropriate choices of ¢ € R and & € R? the wavelet has nearly zero average and is
almost analytic. The generators of a Gabor wavelet semi-discrete frame are obtained from
dilations and rotations of the mother wavelet:

Vio(x) =2"4(27 R ), jE€Z,0€O
where Ry is the two dimensional rotation matrix by the angle 6,
cos) —sind
Fy = < sinf  cos# )
A simple computation shows that
%‘,0(%) _ 92j0<x)6i2_jR9§.:c

Thus 1 changes the essential support of ¢ from a ball of radius o to a ball of radius 270,
the direction of oscillation is rotated by 6 radians, and the magnitude of the frequency of
this oscillation is now 277[¢|. In frequency we have:

Dio(w) = P(2 Ry 'w) = e~ (P ko2 Rutl?/2

Thus the essential support of 9, (w) is a ball of radius (27¢)" centered at 277 Rgé. These
frequency supports will cover the upper half plane for appropriate choices of K (the number



Figure 37: Frequency supports of the two dimensional oriented Gabor wavelets. Scales 27 are
indicated with different colors. The central green ball corresponds to the frequency support
of a two dimensional scaling function.

of angles #) and &; reflections will then cover the lower half plane, and so (82) will be satisfied.
Figure 37 illustrates this frequency covering.
As in one dimension, Gabor wavelets can be amended to have precisely zero average:

Y(z) = go(2)(e®* — C), C chosen so that Y(z)dr =0
R2

which gives a directional Morlet wavelet. Figure 38 plots the real part of a Morlet wavelet
at different scales and orientations; Figure 39 plots the imaginary part; and Figure 40 plots
their Fourier transforms.

A dyadic Gabor/Morlet wavelet transform computes:

WiE={f*vo(u):jE€Z, 0O, ucR?}

Figure 41 shows the result of computing the dyadic Gabor wavelet transform of an image
consisting of one texture embedded in another texture. The middle texture is relatively
smooth along vertical lines, but has significant variations in the horizontal direction. It
results that a Gabor wavelet transform with two directional angles § = 0 and 0 = 7/2
will have large magnitude responses for § = 0, and negligible response for § = /2. The
outside texture, on the other hand, has the most variation along the angle a = 7/4. The
Gabor wavelet coefficients along the directions # = 0, 7 /2 should be negligible for this outside
texture, and indeed they are.

Figure 42 computes the Morlet wavelet transform of a black and white image of a but-
terfly, where the directional edge detection properties of the transform are exhibited, partic-
ularly in the wing of the butterfly.

As a point of comparison, we can define a non-directional wavelet ¢)(x) as the Laplacian
of a Gaussian:

O(2) = —(Ag)(x),  gla) = —— el

2mo?
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Figure 38: Real part of Morlet wavelets. Increasing scale left to right, and increasing angle
in [0, 7) from top to bottom. Green is positive, pink is negative, and white is zero.
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Figure 39: Imaginary part of Morlet wavelets. Increasing scale left to right, and increasing
angle in [0, ) from top to bottom. Green is positive, pink is negative, and white is zero.
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Figure 40: Fourier transforms of Morlet wavelets. Increasing scale left to right, and increasing
angle in [0, ) from top to bottom. Green is positive, pink is negative, and white is zero.
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Figure 41: Top: Image of one texture embedded in another texture. Bottom: The magnitude
of the Gabor wavelet transform |W f(u, j,0)| = |f * ¢;0(u)| for j = —4, =5 and § = 0, 7/2.
Images taken from Figure 5.9 of [1].

Note we have
~ e 21,12
P(w) = |wG(w) = |w[?e 7 W2

and so ¢ is indeed a wavelet, and is radially symmetric, meaning it has no directionality.
The wavelet transform for this wavelet computes:

Wf={f*¢u):j€Z, ueR?}

Even though this wavelet has no directionality, it can still pick up edges at small scales and
meso- and macroscopic patterns at larger scales, agnostic of the direction. See Figure 43 for
pictures and more details.

Exercise 74. Read Section 5.5.1 of A Wavelet Tour of Signal Processing.

Exercise 75. Read Section 5.5.2 of A Wavelet Tour of Signal Processing.

6.4 Multiscale Edge Detection
Section 6.3 of A Wavelet Tour of Signal Processing.

6.4.1 Wavelet Maxima for Images

Section 6.3.1 of A Wawvelet Tour of Signal Processing.

Taken directly from [1]: Image edges are often important for pattern recognition. This is
clearly illustrated by our visual ability to recognize an object from a drawing that gives a
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(b) Modulus of Morlet wavelet coefficients, |f * 1, g(u)|.

Figure 42: (a) Black and white image of a butterfly. (b) Modulus of the Morlet wavelet
coefficients, with increasing scale from left to right and increasing angle from top to bottom.
Small wavelet coefficients have been set to zero to better illustrate the large amplitude
coefficients. 12



In space

Fourier transform

Filtered image

Figure 43:

~

°

-2

Wavelet g;(u) with j = 1

Wavelet g;(u) with j = 2

Wavelet g;(u) with j = 3

Wavelet (u) with j = 4

Wavelet ;(u) with j =5

Wavelet y(u) with j = 6

Low pass ¢)(u) w J =6

i : e e e .
e | e :
iy b
10 Ve . 100 | ’ 100 | 100
150 | ;‘f’/’ , 4 150 . ’ 150 ' 150
20 < / ;' 20 ‘ - | 20 . “ 20
= o 100 200 = o .100 0 = o 100 200 = 100 200
Non-directional wavelet transform based upon ¢(x) = —(Ag)(z), for g(z) a

Gaussian. Scale increases from left to right; green is positive, pink is negative, white is
zero in the first two rows. In the last row, grey/black is positive, white is zero. Top row:
The Fourier transforms zzj (w), which are like donuts. Middle row: The wavelets v;(z),
which oscillate radially out from the origin. Bottom row: The absolute value of the wavelet
coefficients, | f *;(u)|, for the butterfly image from Figure 42(a). Notice at small scales the
wavelet still detects edges, but agnostic to the direction.
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rough outline of contours. But, what is an edge? It could be defined as points where the
image intensity has sharp transitions. A closer look shows that this definition is often not
satisfactory. Image textures do have sharp intensity variations that are often not considered
as edges. When looking at a brick wall, we may decide that the edges are the contours of the
wall whereas the bricks define a texture. Alternatively, we may include the contours of each
brick in the set of edges and consider the irreqular surface of each brick as a texture. The
discrimination of edges versus textures depends on the scale of analysis.
Figure 44 displays an image of bricks form the Brodatz image database.

Figure 44: Bricks

Let f:R? — R be a two dimensional signal, such as an image. A Canny edge detection
algorithm detects points of sharp variation in f by calculating the norm of the gradient
vector of f. Recall the gradient of f is:

_(9f of
Vi@ = (5L )
Let 77 = (cos 3,sin 3) be a unit vector in R%. The directional derivative of f in the direction
7 is defined as: 5 5 )
f(x) =V/f(x) = a—f(x) cos B + a—f(x) sin 3

on 1 To
The absolute value of df/0n is maximum if 77 is colinear to Vf. Since 0f/0r(x) will be
maximum in the direction of most change around z, this shows that the gradient V f(z)
points in the direction of the most rapid increase around the point z € R?; see Figure 45 for
an illustration. The magnitude of the variation at x (or edge strength) is given by the norm

of the gradient:
V1) = \/ (L) +(Lw)

Additionally the direction of the gradient is given by:

—1 3f/8m2(z) ﬁ
Af(x) = tan <8f/8m1(m)> ox1 (l‘) >0 (83)
—1 ( 0f/0z2(x) af
THtan T\ 5ran ) ) o (r) <0
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A point y € R? is defined as an edge if |V f(z)| is locally maximum at z = y. Figure 46
shows the performance of the Canny edge detector (a refined version of it) on a color image.

Vf:[%.o] ‘ vaz[%%]
] k

vf=o, ‘.fg

Q

~

Figure 45: Ilustration of the gradient vector for simple images.

A multiscale version of the Canny edge detector is implemented by smoothing the image
with a convolution kernel §(z) that is dilated at different scales. This is computed with two
wavelets that are partial derivatives of 0:

00 00

¢1 = _8_371’ ¢2 = _8_1'2

These wavelets are dilated at the scales 27 for j € Z:

Vip(x) =277 p(277 )

and the dyadic wavelet transform computes:

Wf - {f * @j,k(u) : ] € Za k= 17 27 u € RQ}? Jjj,k(x) = ¢j,k<_x)

We write W f(u, j) as B

- frabia(u) >

Wf(u,j) = -
i = £
and we think of it as two-dimensional vector valued function, W f(u, j) € R% The wavelets
;1 measure variations in the horizontal direction at the scale 27, while the wavelets ;5
measure variations in the vertical direction at the scale 27.
Denote

0;(z) =2770(2772),  0;(z) = 0;(—x)

Figure 46: The result of the Canny edge detector applied to the image on the left. Taken
from https://en.wikipedia.org/wiki/Canny_edge_detector
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The dyadic wavelets can be written as:

_ 00,
o _9i271
wj’k 2 ka
It follows that 9
frvjp(u) = 2]8_W(f *0;)(u)

and so

W) = (1000 ) =29 )

Therefore W f(u, j) is proportional (up to a factor 27) to the gradient of the smooth version
of f at the scale 27. The norm of W f(u, j), defined as:

W ()] = /1 % Gy () 2+ |f 5 Do)

is thus proportional to |V(f * ;) (u)| as well. We can also compute the angle AW f(u, j) of
W f(u, j) using the definition (83).
The unit vector
fj(u) = (cos AW f(u, j),sin AW f(u, j))

is colinear to V(f*0;)(u). An edge point at the scale 27 is a point v € R? such that |W f(u, )|
is locally maximum at at u = v. These points are two dimensional wavelet modulus maxima.
Individual wavelet modulus maxima are chained together to form a maxima curve that follows
an edge.

Figure 47 computes the Canny dyadic wavelet transform of image of a disc. The wavelet
modulus maxima curves are along the boundary of the disc.

As in 1D the decay of the 2D Canny dyadic wavelet coefficients depends upon the local
regularity of f. Let 0 < o < 1 denote the Lipschitz regularity. A function f : R? — R is
Lipschitz a at v € R? if there exists K > 0 such that for all x € R?,

|[f(x) = f(v)] < K|z — o[

where |z| is the norm of x € R?. As in one dimension, the local Lipschitz regularity of
f is related to the asymptotic decay of W f(u,j). Indeed, this regularity is controlled by
|W f(u,7)|. Let Q C R? be a bounded domain. One can prove that f is uniformly Lipschitz
« inside € if and only if there exists A > 0 such that

W f(u,j)| < A2 YueQ

Also analogously to the 1D setting, we can synthesize high fidelity approximations to
images using only their wavelet modulus maxima. Similarly to before, let A denote the set
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Figure 47: Top image: The disc. (a) Horizontal wavelet transform: f 10,1 (u) for —6 < j < 0.
(b) Vertical wavelet transform: f 1;9(u) for —6 < j < 0. (c¢) Norm of wavelet coeflicients
W f(u,7)|. (d) Angles AW f(u, j) where |W f(u, )| # 0. (e) The wavelet modulus maxima

curves.



of wavelet modulus maxima of f using the Canny dyadic wavelet transform. The synthesized
image is computed using the dual synthesis:

o= D0 D U i) ui

(u,j)EA k=12

One can also de-noise images by thresholding wavelet modulus maxima. Suppose that
we have only a noisy version of f, modeled as

f@) = f(z) +e(@), e(@)~N(0,07)

where e(x) is sampled independently and identically from the normal distribution; ¢ is re-
ferred to as white noise. The wavelet coefficients of f are:

Wf=Wf+We

At the large scales the averaging by éj kills much of We since € has zero average. However,
at small scales, the wavelets respond against € and We masks W f. The image can be de-
noised by thresholding the wavelet coefficients W f, which results in a “cartoon” version of
the original image if the variance o2 of the noise is not too large; Figure 48 illustrates the
idea.

Exercise 76. Read Section 6.3 of A Wawvelet Tour of Signal Processing.

Exercise 77. OPTIONAL Using your code from previous exercises compute the dyadic
wavelet transform of the signal in Figure 13. Compute the wavelet modulus maxima as well.
Implement a dual synthesis projection (however you like) and compute fy, i.e., the signal
synthesized from only the wavelet modulus maxima coefficients. Threshold the wavelet
modulus maxima coefficients and synthesize a signal only from the largest ones. Turn in
plots of the wavelet coefficients, the wavelet modulus maxima, and the synthesized signals.
Explain your results.

Exercise 78. OPTIONAL Let K € Nwith K > 2 and define 77, = (cos(27k/K),sin(2nk/K)) €
R2.

(a) Prove that D = {7} : 0 < k < K} is a tight frame of K vectors in R? and that for any
w € R?, it satisfies

=

 K|wp?
)

jw - 7|
0

iy

(b) Let
00
¢k - 67775;{

be the directional derivative of #(z) in the direction 7). Define dilations of v, as:

Yik(x) =279 (272), jEL
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Figure 48: (a) Noisy peppers image. (b) Restored peppers image from the thresholding the
maxima curves shown in (d). (c) The wavelet modulus maxima points of the noisy image
for scales —7 < j < —5. (d) The thresholded wavelet modulus maxima.
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If (x) is rotationally invariant (i.e., #(x) depends only on |z|), then prove that D =
{Yjr 1 j € Z,0 < k < K} are the generators of translation invariant semi-discrete
frame if and only if

2A . ~ 2B
= < > 25w’ |f(2w) | < oo ae we R?

JET

Exercise 79. OPTIONAL In this problem you will compute the wavelet transform of two
dimensional textures.

(a) Implement a dyadic 2D Morlet wavelet transform. Visualize your wavelets and their
Fourier transforms, as in the plots posted in the #in-class channel of the course Slack,
and turn these visualizations in.

(b) Take an image of your choice, and compute the dyadic Morlet wavelet transform of
the image. Turn in plots of the real and imaginary parts of the wavelet coefficients for
each (7,0), and the modulus of the wavelet coefficients for each (j,6). Do you see the
directional responses at different scales?
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