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Lecturer: Matthew Hirn

6.1.3 Dual Frame Analysis and Synthesis Computations
Section 5.1.83 of A Wawvelet Tour of Signal Processing.

To compress and denoise a signal f we will project the signal onto a closed subspace V C ‘H
that is generated from the span of a subset dictionary atoms from a larger dictionary. We
thus need to study projections onto V. As is well known from linear algebra, the best linear
approximation of f € H in V is the orthogonal projection of f onto V. To make clear the
setup, we let D = {@, },er C H be a dictionary in H, but which is a frame only on V, i.e.,

Allgll®* <Y g ) < Bllgll>, VgeV

vyel

The analysis operator ® is still defined on all of H, but it may not behave “nicely” off of V.
The next theorem shows how to compute the orthogonal projection of f € H onto V with
the dual frame.

Theorem 6.6. Let D = {¢,} er be a frame for V.C H, and D= {{b}}wep its dual frame
on V. The orthogonal projection of f € H onto V is

Pyf = Z<f7 ¢'y>$'y = Z<.f7 $7>¢'y (70)

vyel vyel

Proof. To show that Py is a projection, we must show that Py g = ¢ for all g € V. But since
D is a frame for V, we have the synthesis formula given by (65) which proves that Pyg = ¢
for all g € V.

To show that Py is an orthogonal projection, we must verify that

<f_PVf7¢n>:O’ Vnel

Note that (65) implies that N
S = (bn: D)0,

vyel



Therefore we compute:

(f = Pvfén) = (f = D> _(f. 6,067, 6n)

=(/, ¢:>€— ;U, 61 (65, bn)
= (f,6n) — 72;& (6, 6n) "0y
= (f, n — 2?% Gn)"63)

= (f, b — §j<¢n, 6:)05)

= ) =0

[]

Since D is a frame for a subspace V C H, ® is only invertible on this subspace and the
definition of the pseudo-inverse is now:

PIOf=f VfeV and ®la=0, Va € image(®)*

Let ®y be the restriction of the frame analysis operator to V. The operator ®*®y, is
invertible on V and we write (®*®v)~! as its inverse on V. One can verify that

of = (&*dy) 10" = &

Let f € H. Theorem 6.6 and (70) give two ways in which to compute orthogonal
projections onto V. In a dual synthesis scenario, the orthogonal projection Py f is computed
from the frame analysis coefficients with the dual frame synthesis operator:

Pyf=0"0f = (f.0,)0, (71)

yel’

If the frame D = {¢, },er does not depend on the signal f, then the dual frame vectors are
precomputed:

by = (CI)*@V>_1¢“/
and the signal Py f is synthesized with (71).

However, in many applications the frame vectors depend on the signal f. In this case the
dual frame vectors ¢., cannot be computed in advance, and it is highly inefficient to compute
them directly for each new signal f. In this case, we have already computed ® f and we want
to compute Py f. We compute first:

y=f =) (f,¢;)0, €V

vyel
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Let L be the linear operator defined as
Lh =®*®dyh, VheV
We then compute Py f via:
L7y = (@*Dy) 10" Of = &*Of = Py f

We have already encountered several situations which would lead to something similar to
the above scenario. For example, when we studied instantaneous frequencies we focused on
the ridge points of either the windowed Fourier transform Sf(u, ) or the wavelet transform
W f(u,s). While these are not frames according to our current definition (since the index
set (u,&) or (u,s) is uncountable), this is something we will remedy shortly. The subspace
V then depends on the signal f since it is the subspace of H generated by the span of the
Gue or the 1, ; that correspond to the ridge points of f in either the windowed Fourier or
wavelet representation. Computing Py f then synthesizes a signal f from only the ridge
information of f. One can do something similar (and we will in a bit) when analyzing
signals with isolated singularities and generating V as the span of the v, s that correspond
to the wavelet modulus maxima. As we shall see the synthesized signal f: Py f ~ f, thus
indicating that these local maxima points carry the majority of information in such signals.

The alternate scenario is a dual analysis, in which Py f is computed as

Pyf=0"0f =) (f.0,)0,

vyel

Similarly to before, if ® does not depend upon f, then the dual frame vectors @ can be
precomputed.

It is also possible in this case to view D = {¢, },er as a subset of a larger frame, which
has been obtained by solving for a sparse approximation of f in the larger frame.

When D depends on f, we again circumvent computing the dual frame directly. Let

af] = ®f(7) = ()
and note that
Pyf=®"a= Za[7]¢7

yel’
Since Py f = ®f, we have that
OP*a =Pf

Let @7, ) be the restriction of ¢* to image(®). Since PP}, 4 is invertible on image(®), we
have
a= ((I)(I);m@)))_l(l)f

Notice that a is obtained by computing a = L'y, where in this case y = ®f and L =
DPDT 4y
m(P)

Exercise 63. Read Section 5.1.3 of A Wavelet Tour of Signal Processing.
Exercise 64. Read Section 5.1.4 of A Wavelet Tour of Signal Processing.

3



6.1.4 Translation Invariant Frames

Section 5.1.5 of A Wawvelet Tour of Signal Processing.

Let {¢,},er C L?(R?) be a countable family of time frequency atoms. Recall that a trans-
lation invariant dictionary is a dictionary D of the form

D= {¢u,’y }uGR, ~el

where
Puny(2) = 5z — u)

The analysis operator associated to D acts upon f € L%(R%) and is defined as

Cf(u,7) = (f, bun) = [ * 04(u),  &y(2) = ¢5(-2)

Since the index set of D is R? x I is not countable, it is thus not strictly speaking a frame

by the definition we have utilized up to this point. However, we can consider the energy of
the transform ® f(u, ), which is defined as

j@f2 = 3121 = Y [ 10 du

el yel

If there exist 0 < A < B < oo such that

A<D NIRfCNIE =D IIf * 6,05 < BIIfI3 (72)

vyer vyel

then all of the frame theory results we have studied thus far still apply. We will refer to such
dictionaries as semi-discrete frames, since their index set is the cross product of R? and T,
where I is discrete but of course R? is not. The next theorem shows that the semi-discrete
frame condition (72) is equivalent to a condition on the Fourier transforms of the generators

b,

Theorem 6.7. Let {¢,},er C L2(R?) be a family of generator functions. Then there exist
0 < A< B < oo such that

A< Z |g$,y(<,u)|2 < B, for almost every w € R%, (73)

vyel

if and only if D = {Guy tucrd rer 5 a semi-discrete frame with frame bounds A and B. Any
family {¢-}er that satisfies

>0 w)e,(w) =1

yel

defines a left inverse

f:Zq)f<'>7)*$’y:Zf*Qg’y*$'y

vyel vyel



and are thus the generators of the dual frame. They are defined in frequency as

= 0,(w)
¢'y(w) = ,Y’\ 2
2 ner |¢n(w)]
Proof. Let H : L2(R?) — L?(R?) be defined as Hf = f * h for some filter h, where h(z) =

h*(—z). We first prove that H*g = g+ h. Indeed, using the Parseval formula (Theorem 2.12)
and the convolution formula we have:

@ H7) = [ o@)(f <) (@) da

Now assume that D is a semi-discrete frame with frame bounds A and B, and let ®., f =
®f(-,y) = f * &,. Since D is a semi-discrete frame, each @, : L?(R?) — L?(R?) and by the
above computation ®*g = g+ ¢,. The analysis operator is ® : L*(R?) — £*(I', L*(R%)) which
can be written as ®f = (®,f),er. Let G = (g,)er € €2(I',L*(RY)) and now compute the
adjoint of ®:

(G,of) = Z<977 o, f)

= <€[>:;g7, f)

yer

= <Z¢§gwf>

yel’

= <ng*¢mf>

vyel

It follows that
oG = Z Gy * Oy

yel

and furthermore

ODf =) fxdy ko,

vyel



The semi-discrete frame condition (72) is equivalent to

AllfIIP < @ fI? = (@*@f, f) < BI f||*
We can rewrite (P*®f, f):

(@ f, ) = /Zf*wqm f(z) da

vyel

—Z/ [ 6y 6(2) [ (@) do

yel

= o [ BB F G

=@%@LM@W<§]@WW)M

vyel

Suppose by contradiction there exists £ C R? with finite but nonzero Lebesgue measure,
i.e., 0 < |E| < oo, and for which

Z 6, (W)>> B, YwekE
Y

Let f(w) = (27)¥21p(w). We have that ||f||> = (27)?|E| and thus f € L2(R%) with || f||? =
|E|. But then

1 d
(@°2f.f) = e / (2m) "1 p(w (Zm )

yerl’

>B/dw—ﬂﬂ—BWW
FE

which contradicts (®*®f, f) < B||f]|*>. A similar argument proves the lower bound, and thus

we have shown that
for a.e. w € RY, A<Z:|¢7 W <B

vyel

Now assume that (73) holds. Let f € L2(R?) and multiply through by (27)~¢|f(w)|? and
integrate over R? to obtain:

w)|? dw < @)D 16, (w)[? dw < w)|[? dw
(2 yel’ (2
which is equivalent to
Allf]? < W) 16, (w)[? dw < BJ|f||? (74)

vel’



We rewrite the inner part:

)2 dew = 1 N SN
271. / ’f | ZW’Y ‘ dw = Z( )d/ f(w) ,y(w) (W)(b»y(W)dw

d
vyerl’

—2/ [+ 8,(@)(f * 6" (2) da

verl’

= Z | f * &’YHQ

vel’

=) _lIefCIP

~yel

Plugging this into (74) proves that D is a semi-discrete frame.
Now let {¢.}er be a family of functions that satisfies

S 3 (@)o, () = 1 (75)
yerl’
First, it is clear that such functions are defined in frequency as:
= $ w
o) = 19
2 ner |9n(W)]
by simply plugging (76) into the left hand side of (75) and verifying that the sum is equal

to one. Now define
:Zq)('v *(b'y Zf*¢'y*¢'y( )

ver yerl

(76)

The Fourier transform of g is:

=3 Flw)d: )6, (@) = Flw) 3 3 (@), () = Flw)

vyel vyel

It follows that ¢ = f, which completes the proof. n

Exercise 65. Read Section 5.1.5 of A Wavelet Tour of Signal Processing.

6.2 Translation Invariant Dyadic Wavelet Transform
Section 5.2 of A Wavelet Tour of Signal Processing.
Recall that a continuous wavelet transform computes
Wf(u,8) = (f,thus) = [ *s(u), V(u,s) € R x(0,00) (77)
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where

us(t) = %w (t - ”) and (1) = %w* (—é)

The operator W, as defined in (77), does not define an analysis operator of a semi-discrete
frame because the scale parameter s takes values over the entire interval (0, c0), which is not
discrete.

A semi-discrete wavelet frame is generated by sampling the scale parameter s along an
exponential sequence {a’};cz for some a > 1. In many applications (but not all!), we take
a = 2. In this case the generating family is {v;},ez with

() = 2779 (2771)
and the translation invariant dictionary is given by:

D= {wu,j}ueRjEZa ¢u,j(t) = ¢j(t - u) = 2_j¢(2_j(t - u))

The resulting analysis operator defines the dyadic wavelet transform:
W f(u, j) = (f,u;) = fxi(u), ;(t) =277¢*(—=277¢)

Notice that rather than normalizing the dilated wavelets by 277/2, which would be analogous
to the normalization s~/2 in the continuous wavelet transform, we normalize by 277. This
is to simplify the following presentation. It simply means that the normalization preserves
the L' norm of ¢ as opposed to the L? norm, that is, ||¢;||1 = |[¢||;. Notice as well that

~

¥;(w) = ¥(2/w) with this normalization.
Applying Theorem 6.7 shows that D is a semi-discrete frame if and only if there exists
0 < A< B <0 such that

A< WE@wP<B, YweR\{0} (78)

JEZ

In this case W : L?(R) — £%(L*(R)) when the scales are restricted to s = 27. Notice that if
¥ is a complex analytic wavelet (meaning that ¢)(w) = 0 for all w < 0), then it is impossible
for (78) to hold. We will come back to this in a bit. For now assume that 1 is a real valued
wavelet. The standard semi-discrete frame condition, which is equivalent to (78), is written
as:
AlFIE < D IF 55 < BIFII3
jEL
Equation (78) shows that if the frequency axis is completely covered by dilated dyadic

wavelets, then a dyadic wavelet transform defines a complete and stable representation of
f € L2(R); see Figure 32.
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Figure 32: The squared Fourier transform modulus |¢(2/w)|? of a real valued spline wavelet,
for 1 <j<5and w e [-m, 7.

Remark 6.8. Recall for the continuous wavelet transform, we had the following admissibility
condition for a real valued wavelet:

S O

W

In fact (78) is closely related to the admissibility condition, as the following calculation shows
(let wy > 0):

+oo |77 2
Cy = / [Pl dw, (CoV:w =2 wy = dw = (log2)2*wed)\)
0
B ) A
= [ ——(log2)2%wy dA

= (log2) [ [(2*wp)[* dA
R
Note that wy > 0 was arbitrary and since \J(w)] = ]@(—w)] for any w, in fact it holds for
any wy # 0. Thus we see (78) is a discrete version of the wavelet admissibility condition.
This calculation also explains why switching to a an L*(R) normalization for the wavelet is
a good idea.

In the case of complex analytic wavelets, one option is to use a larger set of generating
wavelets given by:
{jctiez.cei—1y, Yie(t) = 2774(e2771)
In this case for suitably chosen wavelets it is possible for (78) to hold. However, it is
unnecessary to double the number of generating wavelets as in the above. Indeed, we can
instead replace (78) with

2A< Y [@W)P + ) [(-2Pw)? <2B, YweR\{0} (79)

JEZ JEZ



which, due to the wavelet ¢ being complex analytic, is equivalent to

24 <) [P(2w)]P < 2B, Vw € (0,00)
JEZ

~

Let f € L%(R) be real valued and let f, be the analytic part of f. Recall that ]/”;(w) =2f(w)
for w > 0 and 2||f]|3 = || fal/3- Then:

Zuf*zzjuézz/R\fwj@)pdt

jez jez
1 D 2177797, |2
- — 27 d
%;/Ruw W) d
1 oo 9 ~
=5/ @ > [ (2w)]? dw
JEZ

11 e

=1 \fa(w)|22|¢(2jw)\2dw

JEZ
A1l +oo
> 2d
> 5o | Rl as
A
= §HfaHg
= Al fII3

A similar argument shows that > || f * ¥;113 < B||f]|3. Therefore the dyadic wavelet trans-
form with a complex analytic wavelet defines a semi-discrete frame with frame bounds A
and B if (79) holds.

Now suppose we only want to compute the dyadic wavelet transform up to a maximum
scale 27 for j < J. The lost low frequency information is captured by a single scaling function
(or low pass filter) whose Fourier transform is concentrated around the origin. Let ¢ € L?(R)
be a low pass filter and let ¢;(t) = 277¢(277t) and let 9 be a real valued wavelet. The dyadic
wavelet transform in this case is defined as:

Wof ={f*osw), fxthj(u)tucr,jcs
The operator W is the analysis operator of a semi-discrete frame if
A<[$W)P+ Y [P@w)f < B
j<J

If the family {v);} ez are the generators of a semi-discrete frame, meaning that (78) holds,
then one can define ¢ in frequency as:

~ (A—i—B/)\/Z, w=0
|¢(W)‘ _{ ijo |¢(2jw)|2’ w0
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Figure 33: The dyadic wavelet transform W, f computed with J = —2 and —7 < j < —3.
The top curve is f(t), the next five curves are f *1;(u), and the bottom curve is f * ¢.

2—3
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Figure 33 plots the dyadic wavelet transform W) f for the signal f from Figure 13.
A dual wavelet for a semi-discrete dyadic wavelet frame (without scaling function) is
computed in frequency as:

- )
o) Zkez|¢<2kw)|2

and the generators of the dual semi-discrete dictionary are given by the dilations of zz , namely
{%;};ez. From this definition it follows that the Fourier transform of ¢); satisfies:

~ ~ @(zjw) @(ij)
(w) = 2]00 - - - o
1%( ) =( ) ZkeZ 1) (20+kw)|2 ZkeZ |1 (2Fw) |?

We thus have

S G Wiy w) = 30 (@w)e@w) =1, Ywe R\ {0}

= JEZ

and so by Theorem 6.7 the following reconstruction formula holds:

F6) =" f by #y(t)

JEL
Things are simplified when the semi-discrete dyadic wavelet frame is tight. In this case

Gui(t) = Jthuslt) = 529020~ w)

and signal synthesis is computed as:
1 _
F&) =5 D fxtbyxyt)
JEL
Notice that we must then have

S WEwPP=A, YweR\{0}

JEZ

if the wavelet 1) is real valued (with a similar condition for complex analytic wavelets). This
is a Littlewood-Paley type condition, and implies the Fourier transforms of the dilations of
the wavelet 1) evenly cover the frequency axis.

Exercise 66. Read Section 5.2 of A Wawvelet Tour of Signal Processing.
Exercise 67. Read Section 5.3 of A Wavelet Tour of Signal Processing.

Exercise 68. Read Section 5.4 of A Wawvelet Tour of Signal Processing.
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Exercise 69. Let h be a filter with /B(O) = /2 and let ¢ € L2(R) be a low pass filter with
the following Fourier transform:

~ 1 ~ ~
P(w) = Eh(w/2)¢(w/2)

Let g be a filter with g(0) = 0 and let ¥ be a wavelet with Fourier transform:

~ 1 -
Y(w) = ﬁg(wﬂ)aﬁ(a)/?)

Prove that if there exist 0 < A < B < oo such that
A2 = [h(w)?) < [g(w)* < B2~ [h(w)])
then the family {v);},cz are the generators of a semi-discrete frame.

Exercise 70. Let X = (X(t))er be a second order stationary stochastic process with

continuous sample paths. Let @ be a real valued, continuous, compactly supported wavelet
for which

S @w)E =1, Vw0
JEL
Prove:
D E[1X «¢;(1)]"] = Varx(0) = E[(X(0) — mx)’], VteR
JEL
Exercise 71. This exercise is about representations of signals f that are invariant to trans-
lation of f.

(a) Let f € L*(R) and let ¢ € LY(R) N C!(R) be a low pass filter with ¢/ € L'(R). Let
fu(t) = f(t —u) be the translation of f by u. Prove there exists a universal constant
C > 0 such that:

1f % 6 — fux dalla < C277ull|¢ 1] 1]
(b) Let ¢ be as in part (a) and suppose ¥ € L*(R) is a wavelet for which
B+ PP =1, YweR
j<J

Part (a) shows that f * ¢, is a representation of f that is invariant to translations
of f so long as |u| < 27. However, f * ¢; only keeps the low frequencies of f. A
representation that keeps more information from f is:

Spf ={f*ds, |fxj|x¢s:j<J}eP(L*(R))

Prove this representation is also translation invariant in the same sense, meaning there
exists a constant C' > 0 such that:

1S5 f = Syfulle@amy < C277ull|¢']1] £
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Exercise 72. THIS EXERCISE IS OPTIONAL! JUST IF YOU WANT AN AD-
DITIONAL CHALLENGE. The Zak transform maps any f € L*(R) to:

Zf(u,§) =Y ™ f(u—1)

leZ

(a) Prove that Z : L*(R) — L?[0,1]? is a unitary operator, i.e. show that

[ tosa- [ 1 / 2. €) 29" (u.) dude

One approach is the following: Let g(t) = 1jo1)(f) and consider

B = {gn,k}(n,k)ezz, gn,k(t) — g(t _ n)e%ikt

Verify that B is an orthonormal basis for L*(R), and then show that {Zg, 1} x)ez2 is
an orthonormal basis for L?[0, 1)%.

(b) Prove that the inverse Zak transform is defined by:
1
Z 7 h(u) = / h(u,&)d¢é, Yh e L?0,1]?
0

(c) Now let g € L%(R) be arbitrary and consider

D = {g’n,k}(n7k)€22, gn,k(t) — g(t _ n)€2ﬂ'lkt

Prove that D is a frame for L?(R) with frame bounds 0 < A < B < oo if and only if

A<|Zg(u,OF < B, ¥(u,8) €[0,1] (80)

(d) Prove that if (80) holds, then the dual window § of the dual frame D is defined by

Zg(u,§) = m
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