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6.1.3 Dual Frame Analysis and Synthesis Computations

Section 5.1.3 of A Wavelet Tour of Signal Processing.

To compress and denoise a signal f we will project the signal onto a closed subspace V ⇢ H

that is generated from the span of a subset dictionary atoms from a larger dictionary. We
thus need to study projections onto V. As is well known from linear algebra, the best linear
approximation of f 2 H in V is the orthogonal projection of f onto V. To make clear the
setup, we let D = {��}�2� ⇢ H be a dictionary in H, but which is a frame only on V, i.e.,

Akgk2 
X

�2�

|hg,��i|
2
 Bkgk2, 8 g 2 V

The analysis operator � is still defined on all of H, but it may not behave “nicely” off of V.
The next theorem shows how to compute the orthogonal projection of f 2 H onto V with
the dual frame.

Theorem 6.6. Let D = {��}�2� be a frame for V ⇢ H, and eD = {e��}�2� its dual frame
on V. The orthogonal projection of f 2 H onto V is

PVf =
X

�2�

hf,��ie�� =
X

�2�

hf, e��i�� (70)

Proof. To show that PV is a projection, we must show that PVg = g for all g 2 V. But since
D is a frame for V, we have the synthesis formula given by (65) which proves that PVg = g
for all g 2 V.

To show that PV is an orthogonal projection, we must verify that

hf � PVf,�ni = 0, 8n 2 �

Note that (65) implies that
�n =

X

�2�

h�n, e��i��
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Therefore we compute:

hf � PVf,�ni = hf �

X

�2�

hf,��ie��,�ni

= hf,�ni �

X

�2�

hf,��ihe��,�ni

= hf,�ni �

X

�2�

hf, he��,�ni
⇤��i

= hf,�n �

X

�2�

he��,�ni
⇤��i

= hf,�n �

X

�2�

h�n, e��i��i

= hf,�n � �ni = 0

Since D is a frame for a subspace V ⇢ H, � is only invertible on this subspace and the
definition of the pseudo-inverse is now:

�†�f = f, 8 f 2 V and �†a = 0, 8 a 2 image(�)?

Let �V be the restriction of the frame analysis operator to V. The operator �⇤�V is
invertible on V and we write (�⇤�V)�1 as its inverse on V. One can verify that

�† = (�⇤�V)
�1�⇤ = e�⇤

Let f 2 H. Theorem 6.6 and (70) give two ways in which to compute orthogonal
projections onto V. In a dual synthesis scenario, the orthogonal projection PVf is computed
from the frame analysis coefficients with the dual frame synthesis operator:

PVf = e�⇤�f =
X

�2�

hf,��ie�� (71)

If the frame D = {��}�2� does not depend on the signal f , then the dual frame vectors are
precomputed:

e�� = (�⇤�V)
�1��

and the signal PVf is synthesized with (71).
However, in many applications the frame vectors depend on the signal f . In this case the

dual frame vectors e�� cannot be computed in advance, and it is highly inefficient to compute
them directly for each new signal f . In this case, we have already computed �f and we want
to compute PVf . We compute first:

y = �⇤�f =
X

�2�

hf,��i�� 2 V
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Let L be the linear operator defined as

Lh = �⇤�Vh, 8h 2 V

We then compute PVf via:

L�1y = (�⇤�V)
�1�⇤�f = e�⇤�f = PVf

We have already encountered several situations which would lead to something similar to
the above scenario. For example, when we studied instantaneous frequencies we focused on
the ridge points of either the windowed Fourier transform Sf(u, ⇠) or the wavelet transform
Wf(u, s). While these are not frames according to our current definition (since the index
set (u, ⇠) or (u, s) is uncountable), this is something we will remedy shortly. The subspace
V then depends on the signal f since it is the subspace of H generated by the span of the
gu,⇠ or the  u,s that correspond to the ridge points of f in either the windowed Fourier or
wavelet representation. Computing PVf then synthesizes a signal ef from only the ridge
information of f . One can do something similar (and we will in a bit) when analyzing
signals with isolated singularities and generating V as the span of the  u,s that correspond
to the wavelet modulus maxima. As we shall see the synthesized signal ef = PVf ⇡ f , thus
indicating that these local maxima points carry the majority of information in such signals.

The alternate scenario is a dual analysis, in which PVf is computed as

PVf = �⇤e�f =
X

�2�

hf, e��i��

Similarly to before, if � does not depend upon f , then the dual frame vectors e�� can be
precomputed.

It is also possible in this case to view D = {��}�2� as a subset of a larger frame, which
has been obtained by solving for a sparse approximation of f in the larger frame.

When D depends on f , we again circumvent computing the dual frame directly. Let

a[�] = e�f(�) = hf, e��i

and note that
PVf = �⇤a =

X

�2�

a[�]��

Since �PVf = �f , we have that
��⇤a = �f

Let �⇤

Im(�) be the restriction of �⇤ to image(�). Since ��⇤

Im(�) is invertible on image(�), we
have

a = (��⇤

Im(�))
�1�f

Notice that a is obtained by computing a = L�1y, where in this case y = �f and L =
��⇤

Im(�).

Exercise 63. Read Section 5.1.3 of A Wavelet Tour of Signal Processing.

Exercise 64. Read Section 5.1.4 of A Wavelet Tour of Signal Processing.
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6.1.4 Translation Invariant Frames

Section 5.1.5 of A Wavelet Tour of Signal Processing.

Let {��}�2� ⇢ L2(Rd) be a countable family of time frequency atoms. Recall that a trans-
lation invariant dictionary is a dictionary D of the form

D = {�u,�}u2R, �2�

where
�u,�(x) = ��(x� u)

The analysis operator associated to D acts upon f 2 L2(Rd) and is defined as

�f(u, �) = hf,�u,�i = f ⇤ �̄�(u), �̄�(x) = �⇤

�
(�x)

Since the index set of D is Rd
⇥ � is not countable, it is thus not strictly speaking a frame

by the definition we have utilized up to this point. However, we can consider the energy of
the transform �f(u, �), which is defined as

k�fk2 =
X

�2�

k�f(·, �)k22 =
X

�2�

Z
|�f(u, �)|2 du

If there exist 0 < A  B < 1 such that

Akfk22 
X

�2�

k�f(·, �)k22 =
X

�2�

kf ⇤ �̄�k
2
2  Bkfk22 (72)

then all of the frame theory results we have studied thus far still apply. We will refer to such
dictionaries as semi-discrete frames, since their index set is the cross product of Rd and �,
where � is discrete but of course Rd is not. The next theorem shows that the semi-discrete
frame condition (72) is equivalent to a condition on the Fourier transforms of the generators
��.

Theorem 6.7. Let {��}�2� ⇢ L2(Rd) be a family of generator functions. Then there exist
0 < A  B < 1 such that

A 

X

�2�

|b��(!)|2  B, for almost every ! 2 Rd, (73)

if and only if D = {�u,�}u2Rd, �2� is a semi-discrete frame with frame bounds A and B. Any
family {e��}�2� that satisfies

X

�2�

b�⇤

�
(!)
be�
�
(!) = 1

defines a left inverse
f =

X

�2�

�f(·, �) ⇤ e�� =
X

�2�

f ⇤ �̄� ⇤ e��
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and are thus the generators of the dual frame. They are defined in frequency as

be�
�
(!) =

b��(!)P
n2� |

b�n(!)|2

Proof. Let H : L2(Rd) ! L2(Rd) be defined as Hf = f ⇤ h̄ for some filter h, where h̄(x) =
h⇤(�x). We first prove that H⇤g = g ⇤h. Indeed, using the Parseval formula (Theorem 2.12)
and the convolution formula we have:

hg,Hfi =

Z

Rd

g(x)(f ⇤ h̄)⇤(x) dx

=
1

(2⇡)d

Z

Rd

bg(!) bf ⇤(!)b̄h
⇤

(!) d!

=
1

(2⇡)d

Z

Rd

bg(!)bh(!) bf ⇤(!) d!

=

Z

Rd

g ⇤ h(x)f ⇤(x) dx

= hg ⇤ h, fi

Now assume that D is a semi-discrete frame with frame bounds A and B, and let ��f =
�f(·, �) = f ⇤ �̄�. Since D is a semi-discrete frame, each �� : L2(Rd) ! L2(Rd) and by the
above computation �⇤

�
g = g⇤��. The analysis operator is � : L2(Rd) ! `2(�,L2(Rd)) which

can be written as �f = (��f)�2�. Let G = (g�)�2� 2 `2(�,L2(Rd)) and now compute the
adjoint of �:

hG,�fi =
X

�2�

hg�,��fi

=
X

�2�

h�⇤

�
g�, fi

=

*
X

�2�

�⇤

�
g�, f

+

=

*
X

�2�

g� ⇤ ��, f

+

It follows that
�⇤G =

X

�2�

g� ⇤ ��

and furthermore
�⇤�f =

X

�2�

f ⇤ �̄� ⇤ ��
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The semi-discrete frame condition (72) is equivalent to

Akfk2  k�fk2 = h�⇤�f, fi  Bkfk2

We can rewrite h�⇤�f, fi:

h�⇤�f, fi =

Z

Rd

X

�2�

f ⇤ �̄� ⇤ ��(x)f
⇤(x) dx

=
X

�2�

Z

Rd

f ⇤ �̄� ⇤ ��(x)f
⇤(x) dx

=
X

�

1

(2⇡)d

Z

Rd

bf(!)b�⇤

�
(!)b��(!) bf ⇤(!) d!

=
1

(2⇡)d

Z

Rd

| bf(!)|2
 
X

�2�

|b��(!)|2
!

d!

Suppose by contradiction there exists E ⇢ Rd with finite but nonzero Lebesgue measure,
i.e., 0 < |E| < 1, and for which

X

�

|b��(!)|2 > B, 8! 2 E

Let bf(!) = (2⇡)d/21E(!). We have that k bfk2 = (2⇡)d|E| and thus f 2 L2(Rd) with kfk2 =
|E|. But then

h�⇤�f, fi =
1

(2⇡)d

Z

Rd

(2⇡)d1E(!)

 
X

�2�

|b��(!)|2
!

d!

> B

Z

E

d! = B|E| = Bkfk2

which contradicts h�⇤�f, fi  Bkfk2. A similar argument proves the lower bound, and thus
we have shown that

for a.e. ! 2 Rd , A 

X

�2�

|b��(!)|2  B

Now assume that (73) holds. Let f 2 L2(Rd) and multiply through by (2⇡)�d
| bf(!)|2 and

integrate over Rd to obtain:

A

(2⇡)d

Z

Rd

| bf(!)|2 d! 
1

(2⇡)d

Z

Rd

| bf(!)|2
X

�2�

|b��(!)|2 d! 
B

(2⇡)d

Z

Rd

| bf(!)|2 d!

which is equivalent to

Akfk2 
1

(2⇡)d

Z

Rd

| bf(!)|2
X

�2�

|b��(!)|2 d!  Bkfk2 (74)
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We rewrite the inner part:

1

(2⇡)d

Z

Rd

| bf(!)|2
X

�2�

|b��(!)|2 d! =
X

�2�

1

(2⇡)d

Z

Rd

bf(!)b�⇤

�
(!) bf ⇤(!)b��(!) d!

=
X

�2�

Z

Rd

f ⇤ �̄�(x)(f ⇤ �̄�)
⇤(x) dx

=
X

�2�

kf ⇤ �̄�k
2

=
X

�2�

k�f(·, �)k2

Plugging this into (74) proves that D is a semi-discrete frame.
Now let {e��}�2� be a family of functions that satisfies

X

�2�

b�⇤

�
(!)
be�
�
(!) = 1 (75)

First, it is clear that such functions are defined in frequency as:

be�(!) =
b��(!)P

n2� |
b�n(!)|2

(76)

by simply plugging (76) into the left hand side of (75) and verifying that the sum is equal
to one. Now define

g(x) =
X

�2�

�(·, �) ⇤ e��(x) =
X

�2�

f ⇤ �̄� ⇤ e��(x)

The Fourier transform of g is:

bg(!) =
X

�2�

bf(!)b�⇤

�
(!)
be�
�
(!) = bf(!)

X

�2�

b�⇤

�
(!)
be�
�
(!) = bf(!)

It follows that g = f , which completes the proof.

Exercise 65. Read Section 5.1.5 of A Wavelet Tour of Signal Processing.

6.2 Translation Invariant Dyadic Wavelet Transform
Section 5.2 of A Wavelet Tour of Signal Processing.

Recall that a continuous wavelet transform computes

Wf(u, s) = hf, u,si = f ⇤  ̄s(u), 8(u, s) 2 R⇥ (0,1) (77)
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where
 u,s(t) =

1
p
s
 

✓
t� u

s

◆
and  ̄s(t) =

1
p
s
 ⇤

✓
�
t

s

◆

The operator W , as defined in (77), does not define an analysis operator of a semi-discrete
frame because the scale parameter s takes values over the entire interval (0,1), which is not
discrete.

A semi-discrete wavelet frame is generated by sampling the scale parameter s along an
exponential sequence {aj}j2Z for some a > 1. In many applications (but not all!), we take
a = 2. In this case the generating family is { j}j2Z with

 j(t) = 2�j (2�jt)

and the translation invariant dictionary is given by:

D = { u,j}u2R, j2Z,  u,j(t) =  j(t� u) = 2�j (2�j(t� u))

The resulting analysis operator defines the dyadic wavelet transform:

Wf(u, j) = hf, u,ji = f ⇤  ̄j(u),  ̄j(t) = 2�j ⇤(�2�jt)

Notice that rather than normalizing the dilated wavelets by 2�j/2, which would be analogous
to the normalization s�1/2 in the continuous wavelet transform, we normalize by 2�j. This
is to simplify the following presentation. It simply means that the normalization preserves
the L1 norm of  as opposed to the L2 norm, that is, k jk1 = k k1. Notice as well that
b j(!) = b (2j!) with this normalization.

Applying Theorem 6.7 shows that D is a semi-discrete frame if and only if there exists
0 < A  B < 0 such that

A 

X

j2Z

| b (2j!)|2  B, 8! 2 R \ {0} (78)

In this case W : L2(R) ! `2(L2(R)) when the scales are restricted to s = 2j. Notice that if
 is a complex analytic wavelet (meaning that b (!) = 0 for all !  0), then it is impossible
for (78) to hold. We will come back to this in a bit. For now assume that  is a real valued
wavelet. The standard semi-discrete frame condition, which is equivalent to (78), is written
as:

Akfk22 
X

j2Z

kf ⇤  ̄jk
2
2  Bkfk22

Equation (78) shows that if the frequency axis is completely covered by dilated dyadic
wavelets, then a dyadic wavelet transform defines a complete and stable representation of
f 2 L2(R); see Figure 32.
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Figure 32: The squared Fourier transform modulus | b (2j!)|2 of a real valued spline wavelet,
for 1  j  5 and ! 2 [�⇡, ⇡].

Remark 6.8. Recall for the continuous wavelet transform, we had the following admissibility
condition for a real valued wavelet:

C =

Z +1

0

| b (!)|2

!
< 1

In fact (78) is closely related to the admissibility condition, as the following calculation shows
(let !0 > 0):

C =

Z +1

0

| b (!)|2

!
d! , (CoV: ! = 2�!0 ) d! = (log 2)2�!0d�)

=

Z

R

| b (2�!0)|2

2�!0
(log 2)2�!0 d�

= (log 2)

Z

R
| b (2�!0)|

2 d�

Note that !0 > 0 was arbitrary and since | b (!)| = | b (�!)| for any !, in fact it holds for
any !0 6= 0. Thus we see (78) is a discrete version of the wavelet admissibility condition.
This calculation also explains why switching to a an L1(R) normalization for the wavelet is
a good idea.

In the case of complex analytic wavelets, one option is to use a larger set of generating
wavelets given by:

{ j,✏}j2Z, ✏2{1,�1},  j,✏(t) = 2�j (✏2�jt)

In this case for suitably chosen wavelets it is possible for (78) to hold. However, it is
unnecessary to double the number of generating wavelets as in the above. Indeed, we can
instead replace (78) with

2A 

X

j2Z

| b (2j!)|2 +
X

j2Z

| b (�2j!)|2  2B, 8! 2 R \ {0} (79)
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which, due to the wavelet  being complex analytic, is equivalent to

2A 

X

j2Z

| b (2j!)|2  2B, 8! 2 (0,1)

Let f 2 L2(R) be real valued and let fa be the analytic part of f . Recall that bfa(!) = 2 bf(!)
for ! > 0 and 2kfk22 = kfak22. Then:

X

j2Z

kf ⇤  ̄jk
2
2 =

X

j2Z

Z

R
|f ⇤  ̄j(t)|

2 dt

=
1

2⇡

X

j2Z

Z

R
| bf(!)|2| b (2j!)|2 d!

=
1

2⇡

Z +1

0

| bf(!)|2
X

j2Z

| b (2j!)|2 d!

=
1

4

1

2⇡

Z +1

0

| bfa(!)|2
X

j2Z

| b (2j!)|2 d!

�
A

2

1

2⇡

Z +1

0

| bfa(!)|2 d!

=
A

2
kfak

2
2

= Akfk22

A similar argument shows that
P

j
kf ⇤  ̄jk

2
2  Bkfk22. Therefore the dyadic wavelet trans-

form with a complex analytic wavelet defines a semi-discrete frame with frame bounds A
and B if (79) holds.

Now suppose we only want to compute the dyadic wavelet transform up to a maximum
scale 2j for j < J . The lost low frequency information is captured by a single scaling function
(or low pass filter) whose Fourier transform is concentrated around the origin. Let � 2 L2(R)
be a low pass filter and let �J(t) = 2�J�(2�Jt) and let  be a real valued wavelet. The dyadic
wavelet transform in this case is defined as:

WJf = {f ⇤ �̄J(u), f ⇤  ̄j(u)}u2R, j<J

The operator WJ is the analysis operator of a semi-discrete frame if

A  |b�(2J!)|2 +
X

j<J

| b (2j!)|2  B

If the family { j}j2Z are the generators of a semi-discrete frame, meaning that (78) holds,
then one can define � in frequency as:

|b�(!)|2 =
⇢

(A+B)/2, ! = 0P
j�0 |

b (2j!)|2, ! 6= 0
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Figure 33: The dyadic wavelet transform WJf computed with J = �2 and �7  j  �3.
The top curve is f(t), the next five curves are f ⇤  ̄j(u), and the bottom curve is f ⇤ �̄J .
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Figure 33 plots the dyadic wavelet transform WJf for the signal f from Figure 13.
A dual wavelet for a semi-discrete dyadic wavelet frame (without scaling function) is

computed in frequency as:
be (!) =

b (!)
P

k2Z |
b (2k!)|2

and the generators of the dual semi-discrete dictionary are given by the dilations of e , namely
{ e j}j2Z. From this definition it follows that the Fourier transform of e j satisfies:

be 
j
(!) =

be (2j!) =
b (2j!)

P
k2Z |

b (2j+k!)|2
=

b (2j!)
P

k2Z |
b (2k!)|2

We thus have
X

j2Z

b ⇤

j
(!)
be 
j
(!) =

X

j2Z

b ⇤(2j!)
be (2j!) = 1, 8! 2 R \ {0}

and so by Theorem 6.7 the following reconstruction formula holds:

f(t) =
X

j2Z

f ⇤  ̄j ⇤
e j(t)

Things are simplified when the semi-discrete dyadic wavelet frame is tight. In this case

e u,j(t) =
1

A
 u,j(t) =

1

A
2�j (2�j(t� u))

and signal synthesis is computed as:

f(t) =
1

A

X

j2Z

f ⇤  ̄j ⇤  j(t)

Notice that we must then have
X

j2Z

| b (2j!)|2 = A , 8! 2 R \ {0}

if the wavelet  is real valued (with a similar condition for complex analytic wavelets). This
is a Littlewood-Paley type condition, and implies the Fourier transforms of the dilations of
the wavelet  evenly cover the frequency axis.

Exercise 66. Read Section 5.2 of A Wavelet Tour of Signal Processing.

Exercise 67. Read Section 5.3 of A Wavelet Tour of Signal Processing.

Exercise 68. Read Section 5.4 of A Wavelet Tour of Signal Processing.
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Exercise 69. Let h be a filter with bh(0) =
p
2 and let � 2 L2(R) be a low pass filter with

the following Fourier transform:

b�(!) = 1
p
2
bh(!/2)b�(!/2)

Let g be a filter with bg(0) = 0 and let  be a wavelet with Fourier transform:

b (!) = 1
p
2
bg(!/2)b�(!/2)

Prove that if there exist 0 < A  B < 1 such that

A(2� |bh(!)|2)  |bg(!)|2  B(2� |bh(!)|2)

then the family { j}j2Z are the generators of a semi-discrete frame.

Exercise 70. Let X = (X(t))t2R be a second order stationary stochastic process with
continuous sample paths. Let  be a real valued, continuous, compactly supported wavelet
for which X

j2Z

| b (2j!)|2 = 1 , 8! 6= 0

Prove: X

j2Z

E
⇥
|X ⇤  

j
(t)|2

⇤
= VarX(0) = E[(X(0)�mX)

2] , 8 t 2 R

Exercise 71. This exercise is about representations of signals f that are invariant to trans-
lation of f .

(a) Let f 2 L2(R) and let � 2 L1(R) \ C1(R) be a low pass filter with �0
2 L1(R). Let

fu(t) = f(t � u) be the translation of f by u. Prove there exists a universal constant
C > 0 such that:

kf ⇤ �J � fu ⇤ �Jk2  C2�J
|u|k�0

k1kfk2

(b) Let � be as in part (a) and suppose  2 L1(R) is a wavelet for which

|b�(2J!)|2 +
X

j<J

| b (2j!)|2 = 1 , 8! 2 R

Part (a) shows that f ⇤ �J is a representation of f that is invariant to translations
of f so long as |u| ⌧ 2J . However, f ⇤ �J only keeps the low frequencies of f . A
representation that keeps more information from f is:

SJf = {f ⇤ �J , |f ⇤  j| ⇤ �J : j < J} 2 `2(L2(R))

Prove this representation is also translation invariant in the same sense, meaning there
exists a constant C > 0 such that:

kSJf � SJfuk`2(L2(R))  C2�J
|u|k�0

k1kfk2
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Exercise 72. THIS EXERCISE IS OPTIONAL! JUST IF YOU WANT AN AD-
DITIONAL CHALLENGE. The Zak transform maps any f 2 L2(R) to:

Zf(u, ⇠) =
X

l2Z

e2⇡il⇠f(u� l)

(a) Prove that Z : L2(R) ! L2[0, 1]2 is a unitary operator, i.e. show that
Z

R
f(t)g⇤(t) dt =

Z 1

0

Z 1

0

Zf(u, ⇠)Zg⇤(u, ⇠) du d⇠

One approach is the following: Let g(t) = 1[0,1](t) and consider

B = {gn,k}(n,k)2Z2 , gn,k(t) = g(t� n)e2⇡ikt

Verify that B is an orthonormal basis for L2(R), and then show that {Zgn,k}(n,k)2Z2 is
an orthonormal basis for L2[0, 1]2.

(b) Prove that the inverse Zak transform is defined by:

Z�1h(u) =

Z 1

0

h(u, ⇠) d⇠, 8h 2 L2[0, 1]2

(c) Now let g 2 L2(R) be arbitrary and consider

D = {gn,k}(n,k)2Z2 , gn,k(t) = g(t� n)e2⇡ikt

Prove that D is a frame for L2(R) with frame bounds 0 < A  B < 1 if and only if

A  |Zg(u, ⇠)|2  B, 8 (u, ⇠) 2 [0, 1]2 (80)

(d) Prove that if (80) holds, then the dual window eg of the dual frame eD is defined by

Zeg(u, ⇠) = 1

Zg⇤(u, ⇠)
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