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6 Frames
Chapter 5 of A Wavelet Tour of Signal Processing.

The windowed Fourier transform Sf(u, ⇠) and the wavelet transform Wf(u, s) are examples
of signal analysis operators, which can be put in a more general context via Frame theory.
Frame theory will give us the mathematical foundation to consider general dictionaries of
time frequency atoms. It will, additionally, give as the mathematical framework to synthesize
signals, not just analyze them. This will be useful for, amongst other reasons, obtaining
sparse compression of signals using just their wavelet modulus maxima coefficients. For now
we leave wavelets to study frames, but we will return to wavelets possessing the framework to
not only complete their story, but also the tools to chart a path forward into signal analysis
via more general dictionaries.

6.1 Frames and Riesz Bases
Section 5.1 of A Wavelet Tour of Signal Processing.

6.1.1 Stable Analysis and Synthesis Operators

Section 5.1.1 of A Wavelet Tour of Signal Processing.

Let H be a Hilbert space with inner product h·, ·i and norm kfk =
p
hf, fi. The main

examples we will want to keep in the back of our mind are the ones we have encountered
thus far in the course, i.e., L2(R), `2, and RN or CN . Consider a dictionary

D = {��}�2� ⇢ H

consisting of atoms �� 2 H, in which the index set � is either finite or countable. The
analysis operator associated to D is:

�f(�) = hf,��i, � 2 �, f 2 H

The dictionary D is a frame for H if there exist constants 0 < A  B < 1 such that

Akfk2 
X

�2�

|hf,��i|
2
 Bkfk2 (60)
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When A = B the frame is tight. If the atoms in D are independent, then the frame is not
redundant and it is called a Riesz basis. We shall see later that frames define invertible
operators on image(�).

We remark that if a Hilbert space H admits a frame D, then H must be separable.
Indeed, suppose that hf,��i = 0 for all � 2 �. Then using the lower bound of (60), we
obtain:

Akfk2 
X

�2�

|hf,��i|
2 = 0 =) f = 0

Thus the only element of H orthogonal to every �� 2 D is f = 0. It follows (with some
work) that D must be a complete set of functions in H. This means that for each f 2 H and
for each " > 0 there exists an N 2 N, {�n}Nn=1 ⇢ � and coefficients {cn}Nn=1 ⇢ C such that

�����f �

NX

n=1

cn��n

�����  "

Since we can additionally take the coefficients {cn}Nn=1 to have rational real and imaginary
parts, we have found a dense subset of H.

The analysis operator � analyzes a signal f 2 H by testing it against the dictionary
atoms ��. The adjoint of � defines a synthesis operator, which we now explain. Consider
the space of `2 sequences indexed by �:

`2(�) = {a : kak2 =
X

�2�

|a[�]|2 < 1}

Notice that the frame condition (60) guarantees that

� : H ! `2(�)

Therefore � has an adjoint
�⇤ : `2(�) ! H

which is defined through the following relation:

h�⇤a, fiH = ha,�fi`2(�)

where the subscript on the inner products h·, ·i is written to emphasize the space over which
the inner product is computed (moving forward we will drop this subscript and infer the
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space from the context). Notice that

ha,�fi =
X

�2�

a[�]hf,��i
⇤

=
X

�2�

a[�]h��, fi

=
X

�2�

ha[�]��, fi

=

*
X

�2�

a[�]��, f

+

from which it follows that
�⇤a =

X

�

a[�]��

We refer to �⇤ as the synthesis operator since it synthesizes signals in H from the sequence
a 2 `2(�).

Notice that the frame condition (60) can be rewritten as:

Akfk2  k�fk2 = h�⇤�f, fi  Bkfk2

where
�⇤�f =

X

�2�

hf,��i�� (61)

Notice that (61) looks exactly like the formula you get for expanding a vector f in an
orthonormal basis. However, � here is a frame and so in general (61) will not return f but
rather another element of H. Back to the point at hand, it follows that we can take A and
B as:

A = inf
f2H

h�⇤�f, fi

kfk2

B = sup
f2H

h�⇤�f, fi

kfk2

This is just the infimum and supremum of the Rayleigh quotient of �⇤�. In finite dimensions,
this implies that A is the smallest eigenvalue of �⇤� and B is the largest eigenvalue of �⇤�;
note that the eigenvalues of �⇤� are the singular values of �. The next theorem shows that
if the frame analysis operator is stable (as defined by the frame condition (60)), then the
frame synthesis operator obeys a similar stability condition.

Theorem 6.1. A dictionary D = {��}�2� is a frame with bounds 0 < A  B < 1 if and
only if

Akak2 

�����
X

�2�

a[�]��

�����

2

 Bkak2, 8 a 2 image(�)
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Proof. Note that �����
X

�2�

a[�]��

�����

2

= h�⇤a,�⇤ai = h��⇤a, ai

The theorem will thus follow if we can show that

inf
f2H

h�⇤�f, fi

kfk2
= inf

a2image(�)

h��⇤a, ai

kak2
(62)

and
sup
f2H

h�⇤�f, fi

kfk2
= sup

a2image(�)

h��⇤a, ai

kak2
(63)

Let us first consider the case of a finite dimensional Hilbert space. In this case H ⇠= RN

or H ⇠= CN . Suppose that D is a frame and let � be an eigenvalue of �⇤� with eigenvector
f� 6= 0. Note the frame condition implies �⇤� is invertible and every eigenvalue satisfies
A  �  B. Furthermore �⇤� can be identified with an N ⇥ N matrix. We claim that
�f� 2 image(�) is an eigenvector of ��⇤ also with eigenvalue �; indeed:

��⇤(�f�) = ��⇤�f� = ��f�

Furthermore �f� 6= 0 since the frame bounds (60) imply that k�f�k2 � Akf�k2. Since
dim(image(�)) = N , we have shown the eigenvalues of �⇤� and ��⇤

|image(�) are identical
and we conclude that (62) and (63) hold.

Now suppose that H is infinite dimensional and D is a frame for H. From our previous
discussion, we know that H is separable, which means that H has a countable orthonormal
basis. Let B = {e1, e2, . . .} ⇢ H be such a basis. Define

HN = span{e1, . . . , eN} ⇢ H

Let �N = �|HN
, that is �N is the restriction of � to HN . Notice that limN!1 HN = H and

limN!1 image(�N) = image(�). Using the proof for the finite dimensional case, we then
have:

inf
f2H

h�⇤�f, fi

kfk2
= lim

N!1

inf
f2HN

h�⇤�f, fi

kfk2

= lim
N!1

inf
a2image(�N )

h��⇤a, ai

kak2
= inf

a2image(�)

h��⇤a, ai

kak2

The proof for the supremum is identical.

The operator ��⇤ : image(�) ! image(�) is the Gram “matrix”. It is defined as:

��⇤a[�] =
X

m2�

a[m]h�m,��i, 8 a 2 image(�)

The next theorem shows that the redundancy of a finite frame in finite dimensions is
easy to measure, and is the obvious answer.
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Theorem 6.2. Let D = {�n}
P

n=1 be a finite frame for RN or CN in which k�nk = 1 for all
1  n  P . Then the frame bounds satisfy:

A 
P

N
 B

and the frame is tight if and only if A = B = P/N .

The proof is on page 157 of A Wavelet Tour of Signal Processing and is quite simple.
Tight frames are easy to come up with by concatenating orthonormal bases. For 1  k  K,
suppose that {�k,�}�2� is an orthonormal basis for H. Since it is an orthonormal basis we
have: X

�2�

|hf,�k,�i|
2 = kfk2

The dictionary
D = {�k,�}�2�, 1kK

is a tight frame with A = B = K; indeed:

KX

k=1

X

�2�

|hf,�k,�i|
2 =

KX

k=1

kfk2 = Kkfk2

Exercise 58. Read Section 5.1.1 of A Wavelet Tour of Signal Processing.

6.1.2 Dual Frame and Pseudo Inverse

Section 5.1.2 of A Wavelet Tour of Signal Processing.

If D = {��}�2� is a frame but not a Riesz basis, then the frame analysis operator � admits
an infinite number of left inverses M such that

M�f = f, 8 f 2 H

This is because of the redundancy of D, which ensures that image(�)? 6= {0}, and so the left
inverse is free to map a 2 image(�)? to any function g 2 H. The pseudo-inverse, written as
�†, is the left inverse M that maps image(�)? to 0:

�†�f = f, 8 f 2 H and �†a = 0, 8 a 2 image(�)?

The next theorem computes the pseudo-inverse explicitly.

Theorem 6.3. If D = {��}�2� is a frame then �⇤� is invertible and

�† = (�⇤�)�1�⇤
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Proof. First recall that we can rewrite the frame condition (60) as:

Akfk2  h�⇤�f, fi  Bkfk2

Thus
�⇤�f = 0 () f = 0

and so �⇤� is invertible. It follows that

(�⇤�)�1(�⇤�)f = f

which shows that M = (�⇤�)�1�⇤ is a left inverse for �. Now we show that M = �†.
We first show that null(�⇤) = image(�)?. Let a 2 null(�⇤) and b 2 image(�) with

�f = b. Then:
ha, bi = ha,�fi = h�⇤a, fi = h0, fi = 0

Thus null(�⇤) ✓ image(�)?. Similarly, now let a 2 image(�)?, so that:

a 2 image(�)? =) ha,�fi = 0 , 8 f 2 H

=) h�⇤a, fi = 0 , 8 f 2 H

=) �⇤a = 0

=) a 2 null(�⇤)

Therefore image(�)? ✓ null(�⇤) and we conclude that image(�)? = null(�⇤). But then

(�⇤�)�1�⇤a = 0, 8 a 2 image(�)? = null(�⇤)

and so we have �† = (�⇤�)�1�⇤.

The pseudo-inverse implements a signal synthesis with the (canonical) dual frame, defined
by:

e�� = (�⇤�)�1��

which has associated frame analysis operator

e�f(�) = hf, e��i

The next theorem shows that the dual frame synthesis operator is indeed the pseudo-inverse
of the original frame analysis operator, and that the dual frame is in fact a frame.

Theorem 6.4. Let D = {��}�2� be a frame with frame bounds 0 < A  B < 1. Then the
dual frame synthesis operator satisfies

e�⇤ = �† (64)

and thus
f =

X

�2�

hf,��i
e�� =

X

�2�

hf, e��i�� (65)
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Furthermore, the dual dictionary
eD = {e��}�2�

is a frame (hence the name dual frame) with frame bounds 0 < 1/B  1/A < 1, meaning
that

1

B
kfk2 

X

�2�

|hf, e��i|
2


1

A
kfk2, 8 f 2 H (66)

If the frame is tight (i.e., A = B), then

e�� =
1

A
��

To prove this theorem, we will need the following lemma.

Lemma 6.5. If L : H ! H is a self-adjoint operator such that there exists 0 < A  B < 1

satisfying
Akfk2  hLf, fi  Bkfk2, 8 f 2 H (67)

then L is invertible and

1

B
kfk2  hL�1f, fi 

1

A
kfk2, 8 f 2 H (68)

Proof. Suppose first that H is finite dimensional of dimension N . Since L is self-adjoint, it
has an orthonormal set of eigenvectors e1, . . . , eN 2 H with eigenvalues �1, . . . ,�N such that

Lek = �kek, 8 1  K  N

Equation (67) implies that A  �k  B for each k. The operator L is therefore invertible,
and it’s eigenvalues are ��1

k
with the same orthonormal eigenvectors ek for 1  k  N . It

follows that (68) must hold. The proof is extended to infinite dimensions using the same
technique as in the proof of Theorem 6.1.

Proof of Theorem 6.4. We first rewrite the dual analysis operator (noting that �⇤� is self-
adjoint, and thus so is (�⇤�)�1):

e�f(�) = hf, e��i = hf, (�⇤�)�1��i

= h(�⇤�)�1f,��i

= �(�⇤�)�1f(�)

Thus
e� = �(�⇤�)�1

and we compute:
e�⇤ = (�⇤�)�1�⇤ = �†

That proves (64).
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Note that (65) can be written as:

I = e�⇤� = �⇤e�

where I is the identity operator. Since e�⇤ = �†, we have

e�⇤� = �†� = I (69)

Using the facts that (e�⇤�)⇤ = �⇤e� and I⇤ = I, and taking the adjoint of both sides of (69),
we obtain the second equality.

For the proof of (66), we use Lemma 6.5. Recall that the frame conditions can be
rewritten as:

Akfk2  h�⇤�f, fi  Bkfk2, 8 f 2 H

Applying Lemma 6.5 to L = �⇤� proves that

1

B
kfk2  h(�⇤�)�1f, fi 

1

A
kfk2, 8 f 2 H

Furthermore, using the first part of the proof we have:
X

�2�

|hf, e��i|
2 = ke�fk2

= h�(�⇤�)�1f,�(�⇤�)�1fi

= h�⇤�(�⇤�)�1f, (�⇤�)�1fi

= hf, (�⇤�)�1fi

This proves (66).
If A = B, then

h�⇤�f, fi = Akfk2, 8 f 2 H

Thus the spectrum of �⇤� is only A, and we have �⇤� = AI. It follows that e�� =
(�⇤�)�1�� = A�1��.

This theorem proves that one way to reconstruct a signal f from its frame coefficients
�f(�) = hf,��i is to use the dual frame e��; equivalently, the synthesis coefficients of f in
D = {��}�2� are the dual frame coefficients e�f(�) = hf, e��i. If the frame is tight, then we
have the simple reconstruction formula:

f =
1

A

X

�2�

hf,��i��

which mirrors the reconstruction of a signal f in an orthonormal basis, except for the factor
of A�1.
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If D = {��}�2� is a Riesz basis then the dictionary atoms are linearly independent, which
implies that image(�) = `2(�); therefore the dual frame eD = {e��}�2� is also a Riesz basis.
Inserting f = �n into (65) yields:

�n =
X

�2�

h�n, e��i��

The linear independence of D implies that the only expansion of �n in D is the trivial
expansion �n = �n, which implies that

h�n, e��i =

⇢
1 n = �
0 n 6= �

Thus the frame and dual frame are biorthogonal bases for H. Furthermore, if the Riesz basis
is normalized so that k��k = 1 for all � 2 �, then using the dual frame bounds (66) and the
biorthogonality we have:

1

B
=

1

B
k�nk

2


X

�2�

|h�n, e��i|
2 = 1 

1

A
k�nk

2 =
1

A

This shows that
A  1  B

for a Riesz basis with normalized atoms.

Exercise 59. Read Section 5.1.2 of A Wavelet Tour of Signal Processing.

Exercise 60. Prove that if K 6= 0, then

D =
�
�n(t) = e2⇡int/K

 
n2Z

is a tight frame for L2[0, 1]. Compute the frame bound.

Exercise 61. Prove that a finite set of N vectors {�n}1nN is always a frame for the space
V defined by:

V = span{�n}1nN

Exercise 62. Let �p 2 RN be defined as:

�p[n] = �[(n� p) mod N ]� �[(n� p� 1) mod N ], 0  p < N

and define V as:

V =

(
f 2 RN :

N�1X

n=0

f [n] = 0

)

Prove that the dictionary D = {�p}0p<N is a translation invariant frame for V; that is,
prove there exists some filter h 2 RN such that (�f)(p) = (f ~ h)(p) for all f 2 V,
where (�f)(p) = hf,�pi is the frame analysis operator. Compute the frame bounds. Is it a
numerically stable frame when N is large?
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