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Lecture 21 & 22: Time-Frequency Analysis of {Bm
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Lecturer: Matthew Hirn

Fractional Brownian motions are interesting because they introduce several new behaviors
relative to the Wiener process. For example, recall that the increments of regular Brownian
motion, i.e. the Wiener process, are independent. This is not the case for fractional Brownian
motion when H # 1/2. In fact the increments of fBm are negatively correlated for H €
(0,1/2) and positively correlated for H € (1/2,1). To see this let s; < t; < s9 < t5 so that
the intervals [s1,t1] and [sq, t2] are non-overlapping, and observe that

Cov(Bg(t1) — Bu(s1),Bu(ta) — Bu(s2))
= E[(Bu(t1) — Bu(s1))(Br(t2) — Br(s2))]
B % (It2 = 512" = [t — 2] = (|sg = 51| = [so — t2*"))

Now note that to — s; — (to — t1) = t; — 51 and ss — s1 — (s9 — t1) = t; — s1 and the function
2?1 is concave when H € (0,1/2) and convex when H € (1/2,1). It follows that

Cov(By(ty) — Bu(s1), Bu(ts) — Bu(s)) { R E%@

Therefore for H € (0,1/2) the fBm is counter-persistent. That is, if it was increasing in
the past, it is more likely to decrease in the future. On the other hand, for H € (1/2,1),
fBm is persistent. That is, the past trend is likely to continue in the future. We can this
phenomenon in Figure 31, in which the the realization for H = 0.15 tends to go up down
with a much higher frequency than than the realization for H = 0.95.

Visually, it would also appear the realizations become smoother with increasing Hurst
parameter H. This is in fact the case, as the modulus of continuity of fractional Brownian
motion is [8]:

iy (8) = 6% [log 6]

Thus it is nearly H-Holder, but not quite. Later on we will show the decay of the wavelet
coefficients as the scale s — 0 of fractional Brownian motion characterize the Hurst exponent
H, and hence the regularity of By, even though realizations of By are nowhere differentiable.

Additionally, fBm have what is called long range dependence when H € (1/2,1). Let us
explain this in more detail, first by defining what long range dependence means and then by
showing fBm possesses this property. We will say a stationary stochastic process has short
range dependence if

/ |Rx(7)|dr < +00
R
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and a stationary stochastic process has long range dependence if

/R Ry ()| dr = 400 (53)

Alternate definitions remove the absolute value, so that short range dependence means

/RX(T) dr < 400
R

and long range dependence means

/RR)(<T) dr = 400

Either way, recall if a stationary stochastic process is centered, i.e., E[X (¢)] = 0 for all t € R,
then
VteR, Rx(r)=E[X@)X(t+71)]

Thus Rx(7) measures the correlation between X (¢) and X (¢ + 7), which has time lag of 7.
For stationary processes with short range dependence, this sum total (integration) of this
correlation over all possible lags is finite, indicating these correlations must decay rapidly as
the lag 7 increases. On the other hand, stationary processes with long range dependence have
correlations that persist even through large time lags, as indicated by (53). This behavior
implies the process has “memory,” which can be useful in many modeling situations.

Alternatively, one can say a stationary stochastic process has long range dependence if
there exists a real number v € (0,1) such that

lim T’YR)((T) = Cx
T—+00

for some constant cy > 0. This is a characterization of long range dependence in the time
domain, and it implies (53). We can also define long range dependence in the frequency
domain. Indeed, from the frequency perspective, we say X has long range dependence if
there exists a real number 5 € (0,1) and a constant ¢x > 0 such that

lim |w|’ Ry (w) = éx (54)
w—0

This frequency condition (54) also implies (53).
Notice the Ornstein-Uhlenbeck process has short range dependence since Rx (1) = i

and thus 5
/ Rx(r)dr = -
R 0

or, from the time perspective,

lim 77e " =0, Vye(0,1)

T—+00



Fractional Brownian motion for Hurst parameter H € (1/2,1) is said to have long range
dependence, but an fBm By is not stationary, so we need to make sense of this statement.
One way to do so is to define a new random process based on the increments of By,

By = (Bu(t+1) — By(t))ier

We will not take this path. Another path is to filter a stochastic process that has stationary
increments with a wavelet transform. It turns out that the resulting process is stationary.
As we mentioned earlier, since fBm is also self-similar, we will also be able to leverage the
wavelet coefficients to characterize the self-similarity / regularity of By. First let us prove
the following proposition.

Proposition 5.25. Let X be a stochastic process with stationary increments and continuous
sample paths. Let ¢ be a continuous real valued wavelet with compact support. Then X 1)
18 a stationary process.

Proof. Let s,t € R. Since ¥ has zero average, we have:

X x1)(t) /Xt—u u) du

= X *4(s)

Letting s =t 4+ v we can apply the same argument to conclude:

(X %t +u))ier = (X *D(t))rer
]

Thus, in particular, By * 1), is a stationary process for any scale parameter s > 0, since
1, is a wavelet. This means that its covariance function can be written as

COVBH*ws (t7 t+ T) = RBH*dJs <T>

On the other hand, we cannot directly apply Theorem 5.21 because By is not stationary.
Nevertheless, we have the following result:

Theorem 5.26. Let By be a fractional Brownian motion with Hurst parameter H. Let v be
continuous, real valued wavelet with compact support. Then By 1) is a stationary Gaussian

process and

~ A ~
Rpyup(w) = WZMW(W)\Q (55)

for some constant Ay > 0.



Since Rp,, .y is not integrable we must understand (55) in the sense of distributions. This
means the proof must leverage the distributional definition of the Fourier transform. We give
a brief overview now.

Recall the space of Schwartz class functions S = S(R), which we originally defined in the
proof of Theorem 2.18. The definition was:

S = {go € C*(R) :Ym,n € Z with m,n > 0, sup [t|™|o™(t)| < oo}
teR

We note that if ¢ € S then ¢ has fast decay, that is

Cmm
L[t

|g0(”)(t)| < Vm,n>0

Now define the dual space of S. It is denoted as &', and is referred to as the space of
tempered distributions. It consists of all continuous linear functionals defined on &:

§' ={T:8 — C:T is continuous and linear}

In order to understand what 7" “continuous” means, we need to place a metric on §. To that
end, define

ol = sup ¢ |0 (1)]
teR

Each || - ||, defines a semi-norm on S. We define the metric on S as

1 ||Q01 - 902Hmn
d = ' |
(1, p2) Z 2t 14 |le1 — @2llmn

m,n>0

Once can prove that S is complete with the metric d(p1, @2). Furthermore, if T € S’ then
there exists some d € Z and constants ¢, , > 0 such that

d d
7@ <Y cnn
m=0 n=0

Conversely, if 7" is a linear functional and (56) holds for some d € Z and ¢, , > 0, then T is
continuous and 7' € §'.
Now let us give some examples of tempered distributions T' € S'.

[l (56)

Example 5.27. The Dirac distribution § : S — C, defined as:

We can generalize it to o, : S — C,



Example 5.28. Let f be Lebesgue measurable and
[f@O] < g() (1 + [¢]™)

for some m > 0 with g € L'(R) and g(t) > 0. Then Ty € S’ where

- / F(D(t) dt

Ty(0)] < / G(8)(1 + [t (1)) dt
< sup(1 -+ [ul™)p(u)| - / g(t) dt

ueR

Indeed,

< 00

Note that f does not have to be in L!'(R) or L*(R).

Now we want to define the Fourier transform of a tempered distribution 7' € &', which
we will denote by T. We first note that for ¢ € S, we can use the L'(R) definition of the
Fourier transform to define @:

Blw) = / () dt

Since ¢ € C®(R) and ™ () has fast decay for each n > 0, € C=(R) and $™(w) has fast
decay for each n > 0 as well. Therefore ¢ € S. Furthermore, for f, o € S, using Fubini’s

Theorem we have
- [ Fea= [ [ [ e dw] o) dt

ol =]
e

Inspired by this correspondence we make the following definition.

Definition 5.29. The Fourier transform of a tempered distribution 7' € §" is the tempered
distribution T" € &’ defined as

T(p):=T(@), VeeS



Example 5.30. For the Dirac distribution

3(e) =8(2) = 2(0) = [ p(t)dt = o)

R

where xa(t) =1ift € AC R and xa(t) =0 if ¢t ¢ A. Hence the interpretation from earlier
in the course that §(w) = 1 for all w € R.

Example 5.31. Let f € L'(R). Then using Fubini’s Theorem:

Ty(o) = T1(2) = [ 0
= [ 10| [ et a

QZM“WWWPM“’
~ [ F)otw)dw=Ty(0)

and thus the L'(R) definition of the Fourier transform agrees with the distributional defini-
tion of the Fourier transform.

Our last example is more complicated, and needed for the proof of Theorem 5.26, so we
collect it in the following lemma.

Lemma 5.32. Let f(t) = [t|* for a > 0. Then, in the sense of distributions,
Flw) = Aafe] 1)

That is
Ty(e) = o v [ ol o) do = lim [l () do
R

e—0t |w|>€

Proof. For the purposes of this proof define p,(t) = p(st). A tempered distribution 7' € &’
is homogeneous of order « if

Vs>0,p€S8S, T(p)=s"TT(p,)

We first show that if 7" is homogeneous of order «, then T is homogeneous of order —(1+ ).
Indeed we know:

Pa(w) = s710(s7'w) = s Be1 (w)
Therefore:

T(ps) = T(33)
=5 'T(Ps1)
— S_ISH_QT(@)

= s"T'(p)



Rearranging: R R R
T(p) = s7T(ps) = s'~1HIT(p)
Now observe that Ty with f(t) = |[t|* is homogeneous of order « since

du
Tf(@s) _ / |t|ag0(8t) dt = / |U/S|a w(u)? — S—(l—i—a)/ |u|a(p(u) dus_(Ha)Tf(gO)
R R R

Therefore ff must be homogeneous of order —(1 + «). Additionally, f(t) = |t|* is even,
which means T¢(y) is “even,” where the latter means

Ti(p-1) = Ty()

Furthermore, since f(t) = [t|* is real valued, Ty(y) is real valued for all real valued ¢ €

S. It follows that T'(¢) must also be even and real valued if ¢ is real valued. But the
only distributions which are homogeneous of order —(1 + «), even, and real valued, are
clw|~(Fe), O

Proof of Theorem 5.26. Set f(t) = Rp,«(t). We compute:
Ty = T4(?)
= /R R (£)(2) di
_ / E[By +(0) By + w(1)]3(1)

dt
=[] [ Bawvca [ B - ]@()d

:/[// By () By (0)]io( —u t—vdudv]
3 [ [ op o= oty (t—v)dudv] at)di
/{/]u\ww /wt—v dvdu+/!v|2Hw / Y(—u)du dv — -
B0

//|u—v|2H W) (t—v)dudv} B(t) dt h

:_5444|u—v|2ﬂ¢(—u> (t— 0)@(t)dudvdt  (CoV:z=t—0)

:_%/R/R/RH—(u+:B)|2HzZJ(—u)¢(:v)g5(t) du dz dt
_ _%/R/RM_ V It — (u |2HA( )dt} du da (57)




Now let us evaluate the integral I. First make a change of variables y = ¢t — (u + x). One
obtains:

I= [ WPty + -t ) dy
R

:/‘y’2H |:/ gO(W)efiw(eru+gc) dw} dy
/|y’2H {/ iw(utx) gp(w)e’i“’y dw:| dy

- / WP FOM )W) dy [(Mop)(y) = ™Vp(y)]
== [ Al e (0) (58)

where in the last line we used Lemma 5.32. Now plug (58) into (57) to obtain:

1) =2 [ [ wcuto [ [ e o] auds
/| ~RHH /¢ —u) “"“du/zp e d dw

- / A I () o)) o
:/RAH| |~} (w) P (w) dw

We conclude that, in the distributional sense,

. Ay~
Rpyup(w) = WW(WW

]

It is tempting to think of the “power spectral density of By” as (A /2)|w|”®#+Y but
this is not quite correct, and would lead, for example, to the wrong interpretation of its long
range dependence property. Recall that since 1 is a wavelet,

~

Y(w)=0(w) asw — 0
and thus ¢ (w)[? = O(|w|?). It follows that

Ry () = O(wf' 1)
Thus when H € (1/2,1) we see that

lim [w[*7 'Ry (w) = ¢ > 0



with 0 < 2H — 1 < 1. Therefore we see that By * 1 has long range dependence. Notice,
however, for H € (0,1/2) the same cannot be said since

D T 1-2H _
VHe(0,1/2), E,ILI%)RBHW(W) =c ili% |w] 0
Using the self-similarity of fBm, one can also show:
4 _H+1/2 u
WBpg(u,s) =s WBy(—,1
s

We leave the details as an exercise.
Exercise 54. Read Section 6.4 of A Wavelet Tour of Signal Processing.

Exercise 55. Let ¢ be a continuous, compactly supported, real valued wavelet. Recall

W f(u,s) = f*,(u) with ¥(t) = 1(—t). Prove:

E[W By (u, s)W By (v, s)] = —SQZH / 2 % 9 (“ - v t) dt
R

Observe that since By is a Gaussian process and
E[W By (u, s)] = E [/ Bu(t)s(t — u) dt} - /]E[BH@WS@ —u)dt =0
R R

you now have a direct proof that (W Bp(u, s)).cr is a stationary stochastic process.

Exercise 56. Let X be a second order stochastic process that is self-similar of order H
with continuous sample paths, and let ) be a continuous, compactly supported real valued
wavelet.

(a) Prove:

X *x1hs(u) L GHH12 Xy qp <E>
s
Conclude that if X also has stationary increments then:

E[IX *vs(u)l] = s™2E[IX « v (0)]]

(b) Suppose X also has stationary increments. Prove:

E[IX s s, | # sy (@)l] _ E[IX # 9] * Y0 (0]
STPE[|X * s, (u)]] E[|X +1(0)]]

The numerator of the left hand side is called a wavelet scattering moment. Give an
interpretation of this result.



Exercise 57. One can obtain realizations of fractional Brownian motion in MATLAB us-
ing the wfbm function (https://www.mathworks.com/help/wavelet/ref/wfbm.html) or in
Python using the fbm package (available at: https://pypi.org/project/fbm/).

(a)

Generate realizations of fractional Brownian motion for three different Hurst param-
eters H, one with H < 1/2, one with H = 1/2 (regular Brownian motion), and one
with H > 1/2. Provide a plot of each realization. Using your code for the real valued
wavelet transform from Exercise 44, compute the wavelet transform for each realization
and plot the wavelet coefficients as in Figure 6.22(b) from the book.

Remark: You should generate long realizations of fBm with N > 10000.

Now estimate the Hurst parameter H using the moments computed in Exercise 56(a).
Do so by noting that Exercise 56(a) implies

F(logy s) := logy B[|Bu * ¢s(u)|] = (H +1/2)logy s + logy B[| Bu + ¢(0)[]  (59)

Since |Bpy * 14| is stationary for each s > 0, the function F'(log,s) on the left hand
side of (59) does not depend on u and can be considered as a function of log, s.
The right hand side of (59) shows F(log, s) is linear with a slope of H + 1/2. Plot
F(log, s) = log, E[| By * 1s(u)]] as a function of log, s for your three realizations from
part (a). Estimate the slope numerically and compare it to the true value of H.

Remark: To estimate E[|By * 1s(u)|] note that |By * 5| is stationary. For a sta-
tionary process Y, one can estimate E[Y (t)] = E[Y'(0)] by computing:

for large N.
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