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1 Sparse Representations
Chapter 1 of A Wavelet Tour of Signal Processing [1].

Exercise 1. Read Chapter 1 (Sparse Representations) of A Wavelet Tour of Signal Process-
ing. It gives a nice overview of the book and will give you a good perspective on computa-
tional harmonic analysis heading into the course.

Exercise 2. Read the appendices in A Wavelet Tour of Signal Processing, as we will not
cover these in class. We will immediately need some of the material contained in them.

Remark 1.1. The integral we use in this course will be the Lebesgue integral, which is
usually taught in a first year graduate course in real analysis. However, if these are unfamiliar
to you, you may replace most if not all of the results with Riemann integrals from Calculus
and assume that the generic functions f , g, h, etc. are Schwartz class functions. For more
details on the Schwartz class and Fourier integrals, see [2].

2 The Fourier Kingdom
Chapter 2 of A Wavelet Tour of Signal Processing [1].

2.1 Linear time-invariant filtering

Section 2.1 of A Wavelet Tour of Signal Processing [1].

Fourier analysis originates with the work of Joseph Fourier, who was studying the heat
equation:

∂tF = ∆F

F (u, 0) = f(u)

Where F : Rd× [0,∞)→ R and f : Rd → R. This is a linear partial differential equation. In
order to solve it, it helps to think about linear algebra. Suppose A is an n× n real valued,
symmetric matrix, which maps vectors x ∈ Rn to other vectors Ax ∈ Rn. Then from the
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spectral theorem, we know that A has a complete set of orthonormal eigenvectors, v1, . . . , vn,
such that

Avk = λkvk

for some λk ∈ R. Since {vk}k≤n forms an ONB, it allows us to write, for any x ∈ Rn,

x =
n∑
k=1

〈x, vk〉vk ,

which in turn makes evaluating Ax very easy:

Ax =
n∑
k=1

〈x, vk〉Avk =
n∑
k=1

λk〈x, vk〉vk .

Let us now try to apply the same ideas to the Laplacian, ∆. We may ask, what are the
eigenfunctions of the Laplacian? If we consider complex valued functions, one can verify
that

∆eiω·u = −|ω|2eiω·u

for any ω ∈ Rd. Thus the function eω(u) = eiω·u is an eigenfunction of ∆ for any ω. Let us
formally define

f̂(ω) = 〈f, eω〉 =

∫
Rd
f(u)e−iω·u du .

This will be what we call the Fourier transform, but right now we see it as an analogue of
basis coefficients in an ONB. Following the analogy, we may then be tempted to write:

f(u) =

∫
Rd
〈f, eω〉eω(u) dω =

∫
Rd
f̂(ω)eiω·u dω .

We this in hand, we then propose

F (u, t) =

∫
Rd
e−|ω|

2tf̂(ω)eiω·u dω ,

as the solution to the heat equation. One can verify that, formally, F indeed is the so-
lution. Fourier analysis was then born by trying to understanding when all of this makes
mathematical sense.

The reason Fourier analysis is used so often in signal processing, is that it turns out this
analysis is not useful for just the Laplacian operator. In fact the Laplacian is just an example
of a more general class operators, called shift invariant operators. Let us now work over R
instead of Rd; we will use t to denote a value in R, since it is often useful to think of it as
time. Let fτ (t) = f(t− τ) be the translation of f by τ ; if t is time, then this is a time delay
by τ . An operator L is shift invariant if it commutes with the time delay of any function,

(Lfτ )(t) = (Lf)(t− τ)
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As we shall see all linear, continuous shift invariant operators L are diagonalized by the
complex exponentials eω(t) = eiωt. To see this, recall the convolution of two functions f, g:

f ∗ g(t) =

∫
R
f(u)g(t− u) du

Now let δ(t) be a Dirac (centered at zero), and δu(t) = δ(t − u) be a Dirac centered at u.
By definition this means f ∗ δ(t) = f(t). We have:

f(t) = f ∗ δ(t) =

∫
R
f(u)δ(t− u) du =

∫
R
f(u)δu(t) du

Since L is continuous and linear,

Lf(t) =

∫
R
f(u)Lδu(t) du

Let h be the impulse response of L, defined as

h(t) = Lδ(t)

Since L is shift invariant, we have

Lδu(t) = h(t− u)

and therefore
Lf(t) =

∫
R
f(u)h(t− u) du = f ∗ h(t) = h ∗ f(t)

Thus every continuous, linear shift invariant operator is equivalent to a convolution with an
impulse response h.

We can now use this fact to show our original goal, which was that the complex expo-
nential functions eω(t) = eiωt diagonalize L. This will in turn motivate the study of Fourier
integrals. We have:

Leω(t) =

∫
R
h(u)eiω(t−u) du = eitω

∫
R
h(u)e−iωu du︸ ︷︷ ︸

ĥ(ω)

= ĥ(ω)eω(t).

Thus eω(t) is an eigenfunction of L with eigenvalue ĥ(ω), if ĥ(ω) exists. The value ĥ(ω)
is the Fourier transform of h at the frequency ω. Since the functions eω(t) = eiωt are the
eigenfunctions of shift invariant operators, we would like to decompose any function f as
a sum or integral of these functions. This will then allow us to write Lf directly in terms
of the eigenvalues of L (as you do in linear algebra when you are able to diagonalize a
matrix/operator on a finite dimensional vector space). We’ll try to undestand when this is
possible.

Exercise 3. Read Section 2.1 of A Wavelet Tour of Signal Processing.
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2.2 Fourier integrals

Section 2.2 of A Wavelet Tour of Signal Processing [1].

The Fourier transform is an operator F that maps a function f(u) to another function f̂(ω),
which is defined as:

F(f)(ω) = f̂(ω) =

∫
R
f(t)e−iωt dt (1)

We will start by trying to understand what restrictions we need to place on f in order for
this to make sense. In particular, if f is in some well defined space of functions, we will
ask, does that imply f̂ is in some other well defined space of functions? We will start by
considering the Lp spaces of functions. To that end, define:

Lp(R) =

{
f : R→ C :

∫
R
|f(t)|p dt < +∞

}
, 0 < p <∞

The space Lp(R) is a Banach space with norm:

‖f‖p =

(∫
R
|f(t)|p dt

) 1
p

The space L2(R) is special, as it is in fact a Hilbert space with inner product

〈f, g〉 =

∫
R
f(t)g∗(t) dt

where we use g∗(t) to denote the complex conjugate of g(t). We also define L∞(R). Set:

‖f‖∞ = ess sup
t∈R

|f(t)|

The value ‖f‖∞ is the smallest number M , 0 ≤ M ≤ +∞, such that |f(t)| ≤ M for almost
every t ∈ R; if f is continuous, it is the smallest number M such that |f(t)| ≤ M for all
t ∈ R. It thus measures whether f is bounded or not. The space L∞(R) is the space of
bounded functions:

L∞(R) = {f : ‖f‖∞ < +∞}
We then have:
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Proposition 2.1. If f ∈ L1(R), then f̂ ∈ L∞(R).

Proof. Suppose f ∈ L1(R). We have:

|f̂(ω)| =
∣∣∣∣∫

R
f(t)e−iωt dt

∣∣∣∣ ≤ ∫
R
|f(t)e−iωt| dt =

∫
R
|f(t)| dt = ‖f‖1 < +∞

Proposition 2.1 shows that F : L1(R)→ L∞(R) is a well defined map using the definition
(1). Later on we will extend the Fourier transform to other Lp spaces for 1 ≤ p ≤ 2, with
particular interest in L2(R). For now recall from Section 2.1 that we would like to write f(t)

in terms of f̂(ω). This requires a Fourier inversion formula. However, the above proposition
only guarantees that f̂ ∈ L∞(R), which will not help with convergence issues. We thus
assume that f̂ ∈ L1(R) as well.

Theorem 2.2 (Fourier inversion). If f ∈ L1(R) and f̂ ∈ L1(R) then

f(t) =
1

2π

∫
R
f̂(ω)eiωt dω, for almost every t ∈ R (2)

To prove this theorem, we will need three standard results from graduate real analysis.
We state them here, without proof.

Theorem 2.3. Suppose {fn}n∈N converges to f in Lp, meaning that

lim
n→∞

‖fn − f‖p = 0

Then there exists a subsequency {fnk}k∈N that converges to f almost everywhere,

lim
k→∞

fnk(t) = f(t) for almost every t

Theorem 2.4 (Dominated Convergence Theorem). Let {fn}n∈N be a sequence of functions
such that limn→∞ fn = f . If

∀n ∈ N, |fn(t)| ≤ g(t) and
∫
R
g(t) dt < +∞

then f ∈ L1(R) and

lim
n→∞

∫
R
fn(t) dt =

∫
R
f(t) dt

Theorem 2.5 (Fubini’s Theorem). Let f(u, t) be a function of two variables (u, t) ∈ R2. If∫
R

(∫
R
|f(u, t)| du

)
dt < +∞
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then ∫∫
R2

f(u, t) du dt =

∫
R

(∫
R
f(u, t) du

)
dt

=

∫
R

(∫
R
f(u, t) dt

)
du

Proof of Theorem 2.2. Now we turn to the proof. Plugging in the formula of f̂(ω) into the
right hand side of (2) yields

1

2π

∫
R
f̂(ω)eiωt =

1

2π

∫
R

(∫
R
f(u)eiω(t−u) du

)
dω

However we cannot apply Fubini directly because the function F (u, ω) = f(u)eiω(t−u) is not
integrable in R2. Therefore we instead consider the following integral:

Iε(t) =
1

2π

∫
R

(∫
R
f(u)e−ε

2ω2/4eiω(t−u) du

)
dω

The Gaussian yields a new integrand Fε(u, ω) = f(u)e−ε
2ω2/4eiω(t−u) which is integrable on

R2, and for which limε→0 Fε = F . We can thus apply the Fubini theorem to Iε(t); we do so
in two ways. For the first, we integrate with respect to u, giving:

Iε(t) =
1

2π

∫
R
f̂(ω)e−ε

2ω2/4eiωt dω.

Since ∣∣∣f̂(ω)e−ε
2ω2/4eiωt

∣∣∣ ≤ |f̂(ω)|

and since f̂ ∈ L1(R), we can apply the dominated convergence theorem to obtain:

lim
ε→0

Iε(t) =
1

2π

∫
R
f̂(ω)eiωt dω (3)

Now compute Iε(t) a second way by applying the Fubini theorem and integrating with
respect to ω. We get that

Iε(t) =

∫
R
gε(t− u)f(u) du = f ∗ gε(t)

where

gε(x) =
1

2π

∫
R
e−ε

2ω2/4eixω dω

=
1

ε
√
π

∫
R

ε

2
√
π
e−ε

2ω2/4eixω dω

=
1

ε
√
π
e−x

2/ε2
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To get the last line, we used the fact that that the Fourier transform of θ(t) = 1√
2πσ

e−t
2/2σ2

is equal to θ̂(ξ) = e−σ
2ξ2/2. This is a useful identity that you should verify yourself and then

remember. Another useful identity is that
∫
R θ(t) dt = 1. From this latter formula we deduce

that ∫
R
gε(x) dx = 1

Furthermore, we notice that

gε(x) = ε−1g1(ε−1x), g1(x) =
1√
π
e−x

2

(4)

Thus the family {gε}ε>0 is an approximate identity. For general approximate identities one
can prove (see below):

lim
ε→0
‖f ∗ gε − f‖1 = 0

We now apply Theorem 2.3 to infer there exists a subsequence {f ∗ gεk}k∈N with εk → 0 as
k → ∞ such that limk→∞ f ∗ gεk = f almost everywhere. On the other hand, using (3) we
have

1

2π

∫
R
f̂(ω)eiωt dω = lim

k→∞
Iεk(t) = lim

k→∞
f ∗ gεk(t) = f(t) for almost every t

thus completing the proof.

To complete the above proof of Theorem 2.2, we introduce the notion of an approximate
identity. A family of functions {kλ}λ>0 is an approximate identity if:

1. Normalized:
∫
R kλ(t) dt = 1 for every λ > 0

2. L1-boundedness: supλ>0 ‖kλ‖1 <∞

3. L1-concentration: For every δ > 0,

lim
λ→0

∫
|t|≥δ
|kλ(t)| dt = 0

One can verify that the family of Gaussian functions {gε}ε>0 from (4) is an approximate
identity. More generally, one often constructs an approximate identity by dilating a single
function k ∈ L1(R) satisfying ‖k‖1 = 1, that is by setting kλ(t) = λ−1k(λ−1t). The following
theorem is useful on its own, and completes the proof of Theorem 2.2.

Theorem 2.6. Let {kλ}λ>0 be an approximate identity. Then

∀ f ∈ L1(R), lim
λ→0
‖f − f ∗ kλ‖1 = 0

To prove Theorem 2.6 we will need the following standard result from real analysis.
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Theorem 2.7 (Lp continuity). Let 1 ≤ p <∞. If f ∈ Lp(R), then

lim
τ→0
‖f − fτ‖p = 0

where we recall fτ (t) = f(t− τ). By the definition of limit, this means for each ε > 0 there
exists a δ > 0 such that

|τ | < δ =⇒ ‖f − fτ‖p < ε

Proof of Theorem 2.6. Since f, kλ ∈ L1(R), one can show that ‖f ∗ kλ‖1 ≤ ‖f‖1‖kλ‖1 <∞,
which means that f ∗ kλ ∈ L1(R). Using the fact that

∫
R kλ = 1 for all λ > 0, we have:

‖f − f ∗ kλ‖1 =

∫
R
|f(t)− f ∗ kλ(t)| dt

=

∫
R

∣∣∣∣f(t)

∫
R
kλ(u) du−

∫
R
f(t− u)kλ(u) du

∣∣∣∣ dt
=

∫∫
R2

|f(t)− f(t− u)||kλ(u)| du dt

=

∫∫
R2

|f(t)− f(t− u)||kλ(u)| dt du [Tonelli]

=

∫
R
|kλ(u)|

∫
R
|f(t)− f(t− u)| dt du

=

∫
R
|kλ(u)|‖f − fu‖1 du

Using Theorem 2.7 we know that for each ε > 0 there exists a δ > 0 such that

|u| < δ =⇒ ‖f − fu‖1 < ε

Also, using the properties of an approximate identity we have

K = sup
λ>0
‖kλ‖1 <∞

and there exists some λ0 > 0 such that

λ < λ0 =⇒
∫
|u|≥δ
|kλ(u)| du < ε
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So now assume that λ < λ0 and continue the calculation we started above:

‖f − f ∗ kλ‖1 =

∫
R
|kλ(u)|‖f − fu‖1 du

=

∫
|u|<δ
|kλ(u)|‖f − fu‖1 du+

∫
|u|≥δ
|kλ(u)|‖f − fu‖1 du

≤
∫
|u|<δ
|kλ(u)|ε du+

∫
|u|≥δ
|kλ(u)|(‖f‖1 + ‖fu‖1) du

≤ ε

∫
R
|kλ(u)| du+ 2‖f‖1

∫
|u|≥δ
|kλ(u)| du

≤ εK + 2‖f‖1ε

Taking ε→ 0 and λ0 → 0 completes the proof.

Exercise 4. Prove that the assumptions of Theorem 2.2 (Fourier inversion) imply that f
must be continuous and bounded.

Remark 2.8. Exercise 4 shows that our Fourier inversion theorem only holds for continuous
functions. However, many signals that we encounter will have discontinuities. Thus we will
need to extend the theory to discontinuous functions. This will be done by extending the
Fourier transform to L2(R) (more on this later).

Recall in Section 2.1 that for a linear shift invariant operator L with impulse response h,
we wanted to write Lf in terms of the eigenvalues ĥ(ω) of L by also being able to compute
f̂(ω). The previous theorem gives us part of the solution; the other part is given by the
convolution theorem, which is stated next.

Theorem 2.9 (Convolution thoerem). Let f, g ∈ L1(R). Then the function h = f ∗ g ∈
L1(R) and

ĥ(ω) = ĝ(ω)f̂(ω)

Proof. See p. 37 of A Wavelet Tour of Signal Processing.

Recall now that every bounded, linear shift invariant operator L can be written as Lf =
h ∗ f , where h = Lδ. Thus using the Fourier inversion theorem and the convolution theorem
we have:

Lf(t) = h ∗ f(t) =
1

2π

∫
R
ĥ ∗ f(ω)eiωt dω =

1

2π

∫
R
ĥ(ω)f̂(ω)eiωt dω

Thus at last we see that the sinusoids eω(t) = eiωt diagonalize L, with eigenvalues ĥ(ω)/2π.
To see this recall from before we wrote for a real valued symmetric matrixA with eigenvectors
{vk}k and eigenvalues {λk}k,

Ax =
n∑
k=1

〈x, vk〉Avk =
n∑
k=1

λk〈x, vk〉vk .
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Figure 1: Summary of basic properties of the Fourier transform. Taken from Table 2.1 of A
Wavelet Tour of Signal Processing.

The correspondence is λk ↔ ĥ(ω)/2π, 〈x, vk〉 ↔ f̂(ω), and vk ↔ eiωt.
The Fourier transform has several important properties that are listed in Figure 1.

Exercise 5. Verify all of the properties in Figure 1. No need to turn this one in, but it is
important to do these verifications.
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Remark 2.10. The Dirac δ(t) is not a function, and hence is not in L1(R); it is a distribution,
which we will not discuss in this course. The Dirac distribution has the property of being an
identity under convolution, meaning that f ∗δ(u) = f(u) if f ∈ L1(R) and if f is continuous.
There is no L1(R) function with this property, so the question is how to define the Dirac. The
notion of an approximate identity {kλ}λ>0, defined above, can be used to define it. Indeed,
we define δ(t) = limλ→0 kλ(t), where we understand that the limit means weak convergence.
By weak convergence, we mean that for any continuous function φ,

lim
λ→0

∫
R
φ(t)kλ(t) dt = φ(0) =:

∫
R
φ(t)δ(t) dt

We can also define a translated Dirac δτ (t) = δ(t− τ), which is defined as the weak limit of
a translated approximate identity. This means that

φ ∗ δ(u) =

∫
R
φ(t)δ(u− t) dt =

∫
R
φ(t)δ(t− u) dt = φ(u) (5)

Note that these properties, in particular (5), follow from defining δ(t) = limλ→0 kλ(t) in the
weak sense, Theorem 2.6, and the fact that φ is continous.

Using this formalism, we define the Fourier transform of δ(t), δ̂(ω), as:

δ̂(ω) =

∫
R
δ(t)e−iωt dt = 1

A translated Dirac δτ (t) = δ(t − τ) has Fourier transform calculated by evaluating e−iωt at
t = τ ,

δ̂τ (ω) =

∫
R
δ(t− τ)e−iωt dt = e−iωτ

The Dirac comb is a sum of translated Diracs:

c(t) =
+∞∑

n=−∞

δ(t− nT ) (6)

It is used to obtain a discrete sampling of an analogue signal, as we shall see later. Its Fourier
transform is:

ĉ(ω) =
+∞∑

n=−∞

e−inTω

Remarkably, ĉ(ω) is also a Dirac comb, as the next theorem shows.
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Theorem 2.11 (Poisson Formula). In the sense of distribution equalities,

+∞∑
n=−∞

e−inTω =
2π

T

+∞∑
k=−∞

δ

(
ω − 2πk

T

)

In other words, for every φ̂ ∈ C∞0 (R), that is for every compactly supported infinitely differ-
entiable function, one has∫

R
φ̂(ω)

[
+∞∑

n=−∞

e−inTω

]
dω =

∫
R
φ̂(ω)

[
2π

T

+∞∑
k=−∞

δ

(
ω − 2πk

T

)]
dω

Proof. See p. 41–42 of A Wavelet Tour of Signal Processing.

Consider now the function

f(t) = 1[−1,1](t) =

{
1 −1 ≤ t ≤ 1
0 otherwise

We can compute the Fourier transform of this function:

f̂(ω) =

∫ 1

−1

e−iωt dt =
2 sin(ω)

ω

One can verify that this function is not integrable; we would expect this from Exercise 4
because f(t) is not continuous. However, f̂(ω) is square integrable; that is f̂ ∈ L2(R). This
motivates extending the Fourier transform to functions f ∈ L2(R). Recall that L2(R) is a
Hilbert space with inner product

〈f, g〉 =

∫
R
f(t)g∗(t) dt.

We first have the following fundamental results:

Theorem 2.12 (Parseval). Let f, g ∈ L1(R) ∩ L2(R). Then:

〈f, g〉 =
1

2π
〈f̂ , ĝ〉

Proof. See p. 39 of A Wavelet Tour of Signal Processing.

Corollary 2.13 (Plancheral). Let f ∈ L1(R) ∩ L2(R). Then:

‖f‖2 =
1√
2π
‖f̂‖2
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Note that in the previous theorems, the inner product and norm are computable because
we assume f, g ∈ L2(R), but the Fourier transform is only well defined because we assume
f, g ∈ L1(R) as well. We would like to remedy this be extending the Fourier transform
to all functions f ∈ L2(R), even those for which f /∈ L1(R). We do this with a density
argument, which will define the Fourier transform of a function f ∈ L2(R) as the limit of
Fourier transforms of functions in L1(R)∩L2(R). A very useful inequality from real analysis,
which we will need here, is Hölder’s inequality :

∀ f ∈ Lp(R), g ∈ Lq(R), p, q ∈ [1,∞],
1

p
+

1

q
= 1, ‖fg‖1 ≤ ‖f‖p‖g‖q

Now to the density argument. The first thing to note is that L1(R) ∩ L2(R) is dense in
L2(R). This means that given an f ∈ L2(R), we can find a family {fn}n≥1 of functions in
L1(R) ∩ L2(R) that converges to f ,

lim
n→∞

‖f − fn‖2 = 0

In fact it is easy to find a such a family. Define:

fn(t) = f(t)1[−n,n](t)

We have that fn ∈ L2(R) for all n ≥ 1 since |fn(t)| ≤ |f(t)| for all t ∈ R. Furthermore,
fn ∈ L1(R) since by Hölder’s inequality we have:

‖fn‖1 =

∫
R
|fn(t)| dt =

∫
R
|f(t)1[−n,n](t)| dt

≤
(∫

R
|f(t)|2 dt

) 1
2
(∫

R
|1[−n,n](t)|2

) 1
2

= ‖f‖2

(∫ n

−n
1 dt

) 1
2

=
√

2n‖f‖2

We also have that

‖f − fn‖2 =

(∫
|t|>n
|f(t)|2

) 1
2

→ 0 as n→∞

Now, since fn → f , the family {fn}n≥1 is also a Cauchy sequence, meaning that for all
ε > 0 there exists an N such that if n,m > N , then ‖fn − fm‖2 ≤ ε. Furthermore, since
fn ∈ L1(R), its Fourier transform f̂n is well defined. The Plancheral formula (Corollary 2.13)
then yields:

‖f̂n − f̂m‖2 =
√

2π‖fn − fm‖2

Thus since {fn}n≥1 is a Cauchy sequence, we see that {f̂n}n≥1 is a Cauchy sequence as well.
Since L2(R) is a Hilbert space, it is complete, which means that every Cauchy sequence
converges to an element of L2(R). Thus there exists an F ∈ L2(R) such that

lim
n→∞

‖F − f̂n‖2 = 0
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We define the Fourier transform of f ∈ L2(R) as F , and from now on write f̂ = F . Note
that when f ∈ L1(R) ∩ L2(R) this definition of the Fourier transform (the L2 definition)
coincides with the definition given in (1) (the L1 definition).

One can show the extension of the Fourier transform to L2(R) satisfies the convolution
theorem (Theorem 2.9), the Parseval formula (Theorem 2.12), the Plancheral formula (Corol-
lary 2.13), and all properties in Figure 1. In particular, the Plancheral formula implies the
following. Let F(f) = f̂ , so that F is the operator that maps a function f to its Fourier
transform f̂ . We see from the Plancheral formula and the extension of the Fourier transform
to L2(R) that F : L2(R)→ L2(R), and furthermore that this linear operator is an isometry
up to a factory 1/

√
2π. The operator F : L2(R)→ L2(R) is bijective, and thus is invertible;

we therefore have Fourier inversion for L2(R) functions as well.

Remark 2.14. To summarize the Fourier transform can be defined on L1(R) in which case
we have

F : L1(R)→ L∞(R)

with ‖f̂‖∞ ≤ ‖f‖1, or on L2(R) where we have:

F : L2(R)→ L2(R)

with ‖f‖2 = (1/
√

2π)‖f̂‖2. It follows then from the Riesz-Thorin Theorem that the Fourier
transform can be extended to Lp(R) for any 1 ≤ p ≤ 2, where we have

F : Lp(R)→ Lq(R),
1

p
+

1

q
= 1, 1 ≤ p ≤ 2

and that

‖f̂‖q ≤
(

1

2π

) 1
p

‖f‖p (7)

Equation (7) is called the Hausdorff–Young Inequality. Note that in general one only obtains
equality for p = q = 2, and indeed F is not an isometry otherwise (up to the constant factor)
and is not invertible. Indeed, we saw this for L1(R), where in order to get Fourier inversion
we had to assume that f̂ ∈ L1(R) as well.

Exercise 6. Read Section 2.2 of A Wavelet Tour of Signal Processing.

2.3 Regularity and Decay

Section 2.3.1 of A Wavelet Tour of Signal Processing [1].

The global regularity of f depends on the decay of |f̂(ω)| as ω → ∞. In particular, the
smoother the function, the faster the decay of |f̂(ω)|. The intuition is that smooth functions
vary slowly, and thus can be well represented by low frequency modes eiωt, i.e., those with
small values of |ω|. On the other hand, if f is irregular, then it must have sharp transitions
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which require fast oscillations to capture. We make these intuitions precise with the following
two results. First defineCn(R) as the space of functions with n continuous derivatives; C0(R)
is the space of continuous functions.

Theorem 2.15. Let 1 ≤ p ≤ 2 and f ∈ Lp(R). If there exits a constant C and ε > 0 such
that

|f̂(ω)| ≤ C

1 + |ω|n+1+ε

for some n ∈ N, then f ∈ Cn(R) ∩ L∞(R).

Proof. We know from Exercise 4 that if f̂ ∈ L1(R), then f is continuous and bounded.
Notice for n = 0 we have:

‖f̂‖1 =

∫
R
|f̂(ω)| dω ≤

∫
R

C

1 + |ω|1+ε
dω <∞

So indeed f ∈ C(R) ∩ L∞(R). Now consider n ∈ N and k ≤ n; define the function Fk(ω) =

(iω)kf̂(ω). We see that:

‖Fk‖1 ≤
∫
R

C|ω|k

1 + |ω|n+1+ε
dω <∞

It thus follows that F−1(Fk) (i.e., the inverse Fourier transform of Fk) is continuous and
bounded. But from Figure 1 we know that F−1(Fk) = f (k)(t), and so the proof is completed.

Note in particular that if f̂ has compact support, then f ∈ C∞(R). In the other direction
we have:

Theorem 2.16. Let f ∈ L1(R) ∩Cn(R) with f (n) ∈ L1(R). Then:

|f̂(ω)| ≤ C

|ω|n

for some constant C1.

Exercise 7. Prove Theorem 2.16.

Remark 2.17. Notice there is a gap between the two theorems relating regularity and decay.
This cannot be avoided. Furthermore, we notice that the decay of |f̂(ω)| depends upon the
worst singular behavior of f . Indeed as the function f(t) = 1[−1,1](t) illustrates, the function
is discontinuous and thus its Fourier decay is limited by Theorem 2.15. However, f has only
two singular points. It is often much more desirable to characterize the local regularity of a
function. However, the Fourier transform cannot do this since the sinusoids eiωt are global
functions on R. In order to remedy both of these points, we will need to introduce localized
waveforms. We will see later that wavelets do the job.

1Thanks to Theodore Faust for pointing out a mistake in an earlier version of the statement of this
theorem.
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Exercise 8. Show that the Fourier transform of

f(t) = e−(a−ib)t2 , a > 0

is

f̂(ω) =

√
π

a− ib
exp

(
− a+ ib

4(a2 + b2)
ω2

)
Exercise 9 (Riemann-Lebesgue Lemma). Prove that if f ∈ L1(R), then lim|ω|→∞ f̂(ω) = 0.
Hint: Start with f ∈ C1(R) that have compact support, and use a density argument.
This approach uses the standard fact from real analysis that compactly supported C∞(R)
functions are dense in L1(R). However, if you have not seen this before, it is unsatisfying to
use it here to prove the exercise. In this case, consider instead the Gaussian function:

g(u) =
1√
2π
e−u

2/2

Define dilations of g as:
gσ(u) = σ−1g(σ−1u), σ > 0

Prove that {gσ}σ>0 forms an approximate identity. The functions {f ∗ gσ}σ>0 are not com-
pactly supported, but they can be used to prove the result. Figure out how and provide the
proof.
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2.4 Uncertainty Principle

Section 2.3.2 of A Wavelet Tour of Signal Processing [1].

The previous section motivates the following question. Can we construct a function f that
is well localized in both time and frequency, and if so, how well localized can it be simulta-
neously in both domains? We know that a Dirac δ(t) is well localized in space, but δ̂(ω) = 1
for all ω, and similarly eξ(t) = eiξt is not well localized in space, but êξ(ω) = δ(ω− ξ). From
the previous section, we know that |f̂(ω)| decays quickly as ω →∞ only if f is very regular.
But if f is very regular, it cannot have sharp transitions and thus cannot decay too fast in
space as t→∞.

Similarly, to adjust the spread of a function f while keeping its total energy constant, we
can dilate by a factor s > 0 with suitable normalization:

fs(t) = s−1/2f(s−1t)

If s < 1, then the spread of f is decreased, while if s > 1 the spread of f is increased.
Regardless, the normalization s−1/2 insures that ‖fs‖2 = ‖f‖2. The Fourier transform of fs
is:

f̂s(ω) =
√
sf̂(sω)

We see that the dilation has the opposite effect on f̂ . In particular, if s < 1, then the spread
of f̂ is increased, while if s > 1, the spread of f̂ is decreased. We thus begin to see there is
a trade-off between time and frequency localization.

Time and frequency localizations are limited by the (Heisenberg) uncertainty principle,
which you may have seen in quantum mechanics as the uncertainty on the position and
momentum of a free particle. We will use the framework of quantum mechanics to motivate
the following discussion, although it will hold for general functions f ∈ L2(R). The state
of a one-dimensional particle is described by a wave function f ∈ L2(R). The probability
density function for the location of this particle to be at t is

1

‖f‖2
|f(t)|2

while the probability density function for its momentum to be ω is

1

2π‖f‖2
|f̂(ω)|2

1



It follows that the average location of the particle is given by

u =
1

‖f‖2

∫
R
t|f(t)|2 dt

while its average momentum is:

ξ =
1

2π‖f‖2

∫
R
ω|f̂(ω)|2 dω

The variance around the average location u is

σ2
t =

1

‖f‖2

∫
R
(t− u)2|f(t)|2 dt

and the variance around the average momentum is:

σ2
ω =

1

2π‖f‖2

∫
R
(ω − ξ)2|f̂(ω)|2 dω

The variances measure our uncertainty as to the location and momentum of the particle. In
particular, the larger the variance, the less certain we are. As one may know from quantum
mechanics, we cannot know the position and momentum of a particle simultaneously. The
following theorem makes this statement precise

Theorem 2.18 (Uncertainty Principle). The temporal variance and the frequency variance
of a function f ∈ L2(R) must satisfy

σ2
t σ

2
ω ≥

1

4

We obtain equality if and only if there exists (u, ξ, a, b) ∈ R2 × C2 such that

f(t) = aeiξt−b(t−u)2

, Real(b) > 0 (8)

Functions (8) are called Gabor functions.

Proof. The proof is relatively simple for functions f ∈ S(R), which are Schwartz class
functions. The Schwartz class is an important class of functions to know, so we define it
now. The space S(R) consists of all infinitely differentiable functions f : R → C such that
f (n)(t) is rapidly decreasing for all n ≥ 0, that is

sup
t∈R
|t|m|f (n)(t)| <∞, ∀m,n ≥ 0

An example of a Schwartz class function is the family of functions defined in (8). The
Fourier transform, as defined for L1(R) functions in (1), is also well defined for f ∈ S(R),
and furthermore F : S(R)→ S(R).
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Now to the proof. First, note that if the time and frequency averages of f are u and ξ
respectively, then the time and frequency averages of e−iξtf(t+u) are zero. Thus it is sufficient
to prove the theorem for u = ξ = 0. First note that if we write f(t) = f1(t) + if2(t), then
f ′(t) = f ′1(t) + if ′2(t),

|f(t)|2 = f1(t)2 + f2(t)2

and
d

dt
|f(t)|2 = 2f1(t)f ′1(t) + 2f2(t)f ′2(t) = f ∗(t)f ′(t) + f(t)f ′∗(t)

We then have using integration by parts:

‖f‖2 =

∫
R
|f(t)|2 dt

= t|f(t)|2
∣∣∣+∞
−∞︸ ︷︷ ︸

0 b/c f∈S(R)

−
∫
R
t
d

dt
|f(t)|2 dt

= −
∫
R
t[f ∗(t)f ′(t) + f(t)f ′∗(t)] dt

Taking the absolute value of both sides yields and using Hölder’s inequality (Cauchy-Schwarz)
we have:

‖f‖2 =

∣∣∣∣∫
R
t[f ∗(t)f ′(t) + f(t)f ′∗(t)] dt

∣∣∣∣
≤ 2

∫
R
|t||f(t)||f ′(t)| dt

≤ 2

(∫
R
t2|f(t)|2 dt

) 1
2
(∫

R
|f ′(t)|2 dt

) 1
2

= 2‖f‖σt
(∫

R
|f ′(t)|2 dt

) 1
2

Now use the Plancheral formula (Corollary 2.13) and the identity F(f ′)(ω) = iωf̂(ω) to
obtain (∫

R
|f ′(t)|2 dt

) 1
2

=
1√
2π

(∫
R
ω2|f̂(ω)|2

) 1
2

= ‖f‖σω

Thus we obtain:
‖f‖2 ≤ 2‖f‖σt‖f‖σω

from which the desired inequality follows.
For the second part, if u = ξ = 0, one can verify that equality holds for f(t) = ae−bt

2 . Now
suppose equality holds. Then we must have equality when we applied the Cauchy-Schwarz
inequality. But this can only happen if the two functions are equal, up to a constant, which
in this case means that

f ′(t) = βtf(t)

3



The solutions to this differential equation are f(t) = aeβt
2/2. Setting −b = β/2 we obtain

(8).
The proof can be extended to any L2(R) function; see for example [3].

The uncertainty principle does not preclude a function having compact support in both
time an frequency. However, this is also impossible.

Theorem 2.19. Let f ∈ L1(R) ∪ L2(R). If f 6= 0 has a compact support, then f̂(ω) cannot
be zero on a whole interval. Similarly, if f̂ 6= 0 has compact support, then f(t) cannot be
zero on a whole interval.

Proof. We prove the second statement. Suppose that f̂ has compact support, which is
included in the interval [−b, b]. Then using the Fourier inversion formula, we have

f(t) =
1

2π

∫ b

−b
f̂(ω)eiωt dω (9)

Suppose by contradiction that f(t) = 0 for all t ∈ [c, d]. Set t0 = (c+ d)/2 and calculate the
nth derivative of f at t0 as:

0 = f (n)(t0) =
1

2π

∫ b

−b
f̂(ω)

d

dt
eiωt
∣∣∣
t=t0

dω =
1

2π

∫ b

−b
f̂(ω)(iω)neiωt0 dω

Now expand eiωt as an infinite Taylor series around t0:

∀ t ∈ R, eiωt =
∞∑
n=0

(iω)n

n!
eiωt0(t− t0)n

Now go back to (9) and plug in the Taylor series for eiωt,

f(t) =
∞∑
n=0

(t− t0)n

n!

1

2π

∫ b

−b
f̂(ω)(iω)neiωt0 dω︸ ︷︷ ︸

0

= 0

But now we have f(t) = 0 for all t ∈ R, which implies that f̂(ω) = 0 for all ω ∈ R; but this
is a contradiction.

Exercise 10. Read Section 2.3 of A Wavelet Tour of Signal Processing.

Exercise 11. Read Section 2.4 of A Wavelet Tour of Signal Processing.

Exercise 12. For any A > 0, construct a function f such that σt(f) > A and σω(f) > A.

3 Discrete Revolution
Chapter 3 of A Wavelet Tour of Signal Processing [1].
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3.1 Sampling Analog Signals

Section 3.1 of A Wavelet Tour of Signal Processing [1].

Signals f : R→ C must be discretized to be stored on a computer. In practice we can only
keep a finite amount of information, which means that we can only keep a finite number
of samples from f . We will return to this setting in a bit. For now we consider a discrete,
countably infinite number of samples from f , given by:

Samples = {f(ns)}n∈Z, s−1 = sampling rate (10)

In particular s = 1 means we sample every integer, s = 2 means we sample every other
integer, while s = 1/2 means we sample every half integer, and so on.

Assume that f is continuous, so that (10) is well defined. We want to know when we can
recover f(t) for all t ∈ R from the samples {f(ns)}n∈Z. We represent these discrete samples
as a sum of weighted Diracs:

fd(t) =
∑
n∈Z

f(ns)δ(t− ns)

The signal fd : R → C is defined for all t ∈ R but only takes nonzero values at t = ns for
n ∈ Z. It is thus a discrete sampling of f ; see Figure 2.

(a) Function f(t) (b) Discrete function samples fd(t)

Figure 2: A continuous function and its discrete sampled version. Taken from Figure 3.1 of
A Wavelet Tour of Signal Processing.

The Fourier transform of fd(t) is:

f̂d(ω) =
∑
n∈Z

f(ns)e−insω

Notice this is a Fourier series; we’ll come back to this point later. We first compute f̂d(ω) a
second way, which will illuminate the relationship between f̂(ω) and f̂d(ω).

Theorem 3.1. The Fourier transform of fd(t) is:

f̂d(ω) =
1

s

∑
k∈Z

f̂

(
ω − 2kπ

s

)
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Proof. Define the Dirac comb (see also (6)) as:

c(t) =
∑
n∈Z

δ(t− ns)

We can rewrite fd(t) as the multiplication of f(t) with c(t):

fd(t) = f(t)c(t)

Using the convolution theorem (Theorem 2.9), we have:

f̂d(ω) =
1

2π
f̂ ∗ ĉ(ω)

But the Poisson Formula (Theorem 2.11) proves:

ĉ(ω) =
2π

s

∑
k∈Z

δ

(
ω − 2πk

s

)
The theorem then follows immediately.

Theorem 3.1 proves that the Fourier transform f̂d(ω) is obtained by making the Fourier
transform f̂(ω) 2π/s periodic. Thus sampling f “periodizes” its frequency response. Figure
3 illustrates the point. The main point here is that if supp f̂ ⊆ [−π/s, π/s], then f(t) can
be recovered from fd(t); if f̂ is supported outside of [−π/s, π/s] then aliasing may occur,
in which case we cannot recover f(t) from fd(t). The next theorem makes precise the first
point.

(a) Fourier transform f̂(ω) of the
signal from Figure 2

(b) Fourier transform f̂d(ω) of the
sampled signal from Figure 2

Figure 3: The Fourier transforms of f̂(ω) and f̂d(ω). Taken from Figure 3.1 of A Wavelet
Tour of Signal Processing.

Theorem 3.2 (Whittaker–Nyquist–Kotelnikov–Shannon Sampling Theorem). If supp f̂ ⊆
[−π/s, π/s], then

f(t) = fd ∗ φs(t) =
∑
n∈Z

f(ns)φs(t− ns)

where
φs(t) =

sin(πt/s)

πt/s
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Proof. If n 6= 0, then the support of f̂(ω−2nπ/s) does not intersect with f̂(ω) since f̂(ω) = 0
for |ω| > π/s. Thus by Theorem 3.1 (see also Figure 3)

f̂d(ω) =
f̂(ω)

s
, |ω| ≤ π

s

The Fourier transform of φs(t) is

φ̂s(ω) = s1[−π/s,π/s](ω)

Therefore
f̂(ω) = φ̂s(ω)f̂d(ω)

Now apply the inverse Fourier transform both sides:

f(t) = φs ∗ fd(t) = φs ∗
∑
n∈Z

f(ns)δ(t− ns) =
∑
n∈Z

f(ns)φs(t− ns)

If the support of f̂(ω) is not included in [−π/s, π/s] then aliasing can occur, which
is what happens when the supports of f̂(ω − 2kπ/s) overlap for several k. In this case
f̂(ω) 6= φ̂s(ω)f̂d(ω), and the sampling theorem (Theorem 3.2) does not apply and we cannot
recover f(t) from fd(t). Indeed, the Fourier transform of fd ∗ φs(t) may be very different
than the Fourier transform of f(t), in which case fd ∗φs(t) will look very different than f(t).
See Figure 4 for an illustration.

A bandlimited signal is a function f such that supp f̂ ⊆ [−R,R] for some R > 0. The
sampling theorem (Theorem 3.2) proves that such signals can be sampled with a discrete
set of samples for an appropriate sampling rate s = π/R. However, by Theorem 2.15, such
signals must necessarily be C∞. We will want to be able to process other signals as well.
We can do so by first filtering f with some filter h (or a family of filters), which computes
f ∗ h(t). If supp ĥ ⊆ [−R,R] then f ∗ h(t) is bandlimited as well, with the same frequency
range. We can thus sample f ∗ h(t) according to Theorem 3.2. In general we are going
to need more than one filter, and each filter will need to be localized in some part of the
frequency axis. This will lead us to Gabor filters (windowed Fourier) and wavelets, amongst
other filter families.

Exercise 13. Read Section 3.1 of A Wavelet Tour of Signal Processing.
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Figure 4: (a) Signal f and its Fourier transform f̂ . (b) Aliasing produced by an overlapping
of f̂(ω−2kπ/s) for different k, shown with dashed lines. (c) Low pass filter φs and its Fourier
transform. (d) The filtering f ∗ φs(t) which creates a low frequency signal that is different
from f . Notice that non-differentiable singular points are smoothed out, and that the high
frequency oscillations on the positive horizontal axis are replaced with a single bump. Taken
from Figure 3.2 of A Wavelet Tour of Signal Processing.
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3.2 Fourier Series

Section 3.2.2 of A Wavelet Tour of Signal Processing.

Let the sampling rate be s = 1 now, which gives samples {f(n)}n∈Z of a signal f(t). Previ-
ously we defined

fd(t) =
∑
n∈Z

f(n)δ(t− n)

and observed that
f̂d(ω) =

∑
n∈Z

f(n)e−inω

This is a Fourier series. Clearly f̂d(ω) is 2π periodic, and thus it is uniquely determined
by its restriction to [−π, π]. This motivates defining Fourier series on `1 and `2, which will
allow us to represent fd(t) as a sequence a = (a[n])n∈Z ∈ `p with a[n] = f(n). Define

`p =

{
a = (a[n])n∈Z : a[n] ∈ C and

∑
n∈Z

|a[n]|p <∞

}
, 0 < p <∞

and
`∞ =

{
a = (a[n])n∈Z : a[n] ∈ C and sup

n∈Z
|a[n]| <∞

}
Define the Fourier transform of a ∈ `p as:

F(a)(ω) = â(ω) =
∑
n∈Z

a[n]e−inω, ω ∈ [−π, π]

The Fourier transform of a ∈ `1 is a Fourier series; it is analogous to the Fourier transform
of f ∈ L1(R). The spaces Lp[−π, π] are defined the same as Lp(R), except that the domain
R is replaced with [−π, π], and we normalize the norm so that for A ∈ Lp[−π, π] we have

‖A‖p =

(
1

2π

∫ π

−π
|A(ω)|p dω

)1/p

For L2[−π, π] we have the inner product defined as:

〈A,B〉 =
1

2π

∫ π

−π
A(ω)B∗(ω) dω

1



It is easy to see that F : `1 → L∞[−π, π] and with a little more work (see Theorem 3.3
below) that F : `2 → L2[−π, π], which mirrors our results for the Fourier transform defined
on L1(R) and L2(R). Further developing the parallel story, Theorem 3.3 below shows that
the family of functions {en}n∈Z with

en(ω) = e−inω

is an orthonormal basis for L2[−π, π]. It follows that F : `2 → L2[−π, π] is a bijection, and
hence invertible.

Theorem 3.3. The family of functions {en}n∈Z is a an orthonormal basis for L2[−π, π].

Proof. The proof that {en}n∈Z are orthonormal is by direct calculation of

1

2π

∫ π

−π
e−inωeimω dω =

{
1 n = m
0 n 6= m

Now we must show that linear expansions of {en}n∈Z are dense in L2[−π, π]. This means
we need to show the following: Let A ∈ L2[−π, π], N > 0 and define the partial Fourier
series of A as:

SN(ω) =
N∑

n=−N

〈A, en〉e−inω, 〈A, en〉 =
1

2π

∫ π

−π
A(ω)einω dω

We need to show that for each ε > 0, there exists N > 0 such that

‖A− SN‖2 < ε

which will mean that limN→∞ SN = A (in the L2 sense), which we can write as

A(ω) =
∑
n∈Z

〈A, en〉e−inω

To prove this we will use some facts about periodic functions; the proofs of these results
can be found in [2]. To start, define a trigonometric polynomial P (ω) as any function

P (ω) =
∑
n∈Z

ane
−inω

with only a finite number of coefficients an being non-zero. The degree of P is defined as the
largest value |n| such that an 6= 0. One fact we will need is that any function φ ∈ C[−π, π]
with φ(−π) = φ(π) can be uniformly approximated by trigonometric polynomials. That is,
for each such φ and each ε > 0 there exists P such that

|φ(ω)− P (ω)| ≤ ε, ∀ − π ≤ ω ≤ π
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A second fact we will need is that for A ∈ L2[−π, π] and ε > 0, we can find a function
φ ∈ C[−π, π] with φ(−π) = φ(π) such that

‖φ‖∞ ≤ ‖A‖∞

and
‖A− φ‖2 ≤ ε2

We also remark that A ∈ L2[−π, π] implies that A ∈ Lp[−π, π] for any since the length of
[−π, π] is finite.

Now for the remainder of the proof. Since the family {en}n∈Z is orthonormal, we must
have

A− SN ⊥ en, ∀ |n| ≤ N

from which it follows that A−SN ⊥ PN , where PN is any trigonometric polynomial of degree
N . Taking PN = SN , this in turn gives:

‖A‖2
2 = ‖A− SN + SN‖2

2 = ‖A− SN‖2 + ‖SN‖2

We also note that for any trigonometric polynomial PN , we have

‖A− SN‖2 ≤ ‖A− PN‖2 (11)

with equality only when PN = SN . Indeed:

A− PN = A− SN + (SN − PN)︸ ︷︷ ︸
P̃N

which implies that
‖A− PN‖2

2 = ‖A− SN‖2
2 + ‖P̃N‖2

2

from which the inequality (11) follows.
We now complete the proof. First consider a φ ∈ C[−π, π] with φ(−π) = φ(π). Given

ε > 0, we can find a trigonometric polynomial PM with degree M such that

|φ(ω)− PM(ω)| < ε, ∀ − π ≤ ω ≤ π

Therefore:

‖φ− PM‖2
2 =

1

2π

∫ π

−π
|φ(ω)− PM(ω)|2 dω

≤ 1

2π

∫ π

−π
ε2 dω ≤ ε2

Thus we have ‖φ − PM‖ ≤ ε. But since partial Fourier series are the best approximation
(11), we then conclude that

‖φ− SN(φ)‖2 ≤ ‖φ− PM‖2 ≤ ε, ∀N ≥M

3



Now let us return to the case of general A ∈ L2[−π, π]. For ε > 0, approximate A with a
φ ∈ C[−π, π], φ(−π) = φ(π), such that ‖A− φ‖2 ≤ ε. Approximate φ with a trigonometric
polynomial PM , as before, to obtain:

‖A− PM‖2 ≤ ‖A− φ‖2 + ‖φ− PM‖2 ≤ 2ε

Now again use the best approximation inequality (11) to conclude that:

‖A− SN‖2 ≤ 2ε, ∀N ≥M

Theorem 3.3 proves that any periodic function A ∈ L2[−π, π] can be written as

A(ω) =
∑
n∈Z

cne
−inω (12)

with
cn = 〈A, en〉 =

1

2π

∫ π

−π
A(ω)einω dω (13)

In particular, if we start with a ∈ `2 and compute its Fourier series:

â(ω) =
∑
n∈Z

a[n]e−inω

then we must have
a[n] =

1

2π

∫ π

−π
â(ω)einω dω

which is a type of Fourier inversion formula for Fourier series. Additionally, if a[n] = f(n)

for some signal f , then from the beginning of this section we see that f̂d(ω) = â(ω) and

f(n) =
1

2π

∫ π

−π
f̂d(ω)einω dω

which gives Fourier inversion for the samples f(n) from f̂d(ω). We have a similar distri-
butional version, which requires defining one more distributional Fourier transform. Recall
that for δτ (t) = δ(t−τ), we defined the Fourier transform as δ̂τ (ω) = e−iωτ . Given this, if we
set eξ(t) = eiξt, it makes sense to define its Fourier transform as êξ(ω) = 2πδ(ω− ξ). Indeed,
eξ is a perfect harmonic vibrating at frequency ξ. Using this fact, if we compute the inverse
Fourier transform of f̂d(ω) in the distributional sense, it is clear we will get back fd(t). More
generally, if we start A ∈ L2[−π, π] and write it as in (12), and compute the distributional
inverse Fourier transform of A, we will get

F−1(A)(t) =
∑
n∈Z

〈A, en〉δ(t− n)
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Of course this is equivalent to computing the Fourier series inversion of A and getting a
sequence (〈A, en〉)n∈Z ∈ `2(R), but it is sometimes convenient to use one over the other.

We also have the following version of the Plancheral formula:

‖a‖2 =
∑
n∈Z

|a[n]|2 =
1

2π

∫ π

−π
|â(ω)|2 dω = ‖â‖2

Define the convolution of a, b ∈ `1 as:

a ∗ b[n] =
∑
m∈Z

a[m]b[n−m]

We have a convolution theorem for `1 sequences as well:

Theorem 3.4. Let a, b ∈ `1. Then a ∗ b ∈ `1 and

â ∗ b(ω) = â(ω)̂b(ω)

Remark 3.5. (see also [4]) In this section we started with a sequence a ∈ `2 and defined its
Fourier transform as the Fourier series with coefficients a[n]. We saw the resulting Fourier
series defines a periodic function A(ω) on L2[−π, π]. This was motivated by discrete sampling
of a function f ∈ L2(R). In many (pure) harmonic analysis texts, though, one starts with
a periodic function A on [−π, π] and computes its Fourier coefficients as the inner products
of A with en, as in (13). In Theorem 3.3 we proved that for any A ∈ L2[−π, π], the partial
Fourier series

SN(A)(ω) =
∑
|n|≤N

〈A, en〉e−inω

converges to A in L2 norm as N →∞, i.e.,

lim
N→∞

‖SN(A)− A‖2 = 0

In fact, the same is true for any A ∈ Lp[−π, π], for 1 < p <∞, that is:

lim
N→∞

‖SN(A)− A‖p = 0

Note this is not true for p = 1 or p =∞! The Plancheral formula above shows that

‖A‖2
2 =

∑
n∈Z

|〈A, en〉|2

that is, if we know the amplitudes of the Fourier coefficients of A, then we can deduce its
L2 norm. It turns out the same is not true for 2 < p < ∞; knowing the amplitudes is not
enough, the phases play a critical role. Let us consider a sequence a ∈ `2. Let εn, n ∈ Z,
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be a sequence of independent Bernoulli random variables, meaning they take value +1 with
probability 1/2 and value −1 with probability 1/2. Then the random Fourier series∑

|n|≤N

εna[n]e−inω

converges to a function that, for 2 < p < ∞, belongs to each Lp[−π, π], almost surely
(i.e., for almost all choices of the sequence εn). But it does not converge for all random
sequences! If we want to estimate the Lp norm of A, breaking it down into its individual
Fourier coefficients goes too far. The right approach is to break the frequencies down into
dyadic packets. These are defined as:

∆jA(ω) =
∑

2j≤|n|<2j+1

〈A, en〉e−inω , j ∈ N

Then using Littlewood-Paley theory, we have that the norm ‖A‖p is equivalent to

|〈A, e0〉|+

∥∥∥∥∥∥
(
∞∑
j=0

|∆jA|2
)1/2

∥∥∥∥∥∥
p

This means, in particular, if
∑∞

j=0 ∆jA ∈ Lp[−π, π], then so does
∑∞

j=0 εj∆jA for all choices
of εj = ±1. This type of idea, breaking the frequencies down into dyadic packets, is at
the heart of wavelet analysis, which we will get to later. We will also rely on this type of
Littlewood-Paley analysis when we want to analyze Cα functions with wavelets.

Exercise 14. Read Section 3.2 of A Wavelet Tour of Signal Processing.

Exercise 15. A rectifier computes g(t) = |f(t)| for recovering the envelope of modulated
signals.

(a) Show that if f(t) = h(t) sin(ω0t) with h ∈ L1(R), h(t) ≥ 0 and ω0 > 0, then g(t) =
|f(t)| satisfies

ĝ(ω) =
2

π

+∞∑
n=−∞

ĥ(ω − 2nω0)

4n2 − 1

Hint: Let A(t) be a 2π periodic function. By Theorem 3.3 we can write

A(t) =
∑
n∈Z

cne
int

with
cn =

1

2π

∫ π

−π
A(t)e−int dt

Compute these Fourier coefficients cn.
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(b) Suppose that ĥ(ω) = 0 for |ω| ≥ ω0. Find φ such that h(t) = φ ∗ g(t).

Exercise 16. An interpolation function f(t) satisfies f(n) = δ(n) for any n ∈ Z.

(a) Prove that ∑
n∈Z

f̂(ω + 2nπ) = 1 ⇐⇒ f is an interpolation function

(b) Suppose that
f(t) =

∑
n∈Z

a[n]θ(t− n), a ∈ `2, θ ∈ L2(R)

Find â(ω) as a function of θ̂(ω) so that f(t) is an interpolation function. Relate f̂(ω)

to θ̂(ω), and give a sufficient condition on θ̂ to guarantee that f ∈ L2(R).

Exercise 17. Let g ∈ `1 and set h[n] = (−1)ng[n]. Relate ĥ(ω) to ĝ(ω). If g is a low pass
filter (meaning that ĝ(ω) is concentrated around 0), then what kind of filter is h? (i.e., where
is its support concentrated?)

Exercise 18. Let b ∈ `1. A decimation of b computes a signal a ∈ `1 with a[n] = b[Mn] for
M > 1 (M ∈ Z).

(a) Show that

â(ω) =
1

M

M−1∑
k=0

b̂(M−1(ω − 2kπ))

(b) Give a sufficient condition on b̂(ω) to recover b from a and give the interpolation formula
that recovers b[n] from a.

7



Math 994-002: Applied and Computational Harmonic Analysis, MSU, Spring 2020

Lecture 06: Finite Length Signals, DFT, and FFT
January 28, 2020

Lecturer: Matthew Hirn

3.3 Finite Length Signals

In practice we cannot store an infinite number of samples {f(n)}n∈Z of a signal f ; instead we
can only keep a finite number of samples, say {f(n)}0≤n<N . We thus must amend our defini-
tion of the Fourier transform as well as convolution, which will lead to the Discrete Fourier
Transform (DFT) and circular convolution. One thing that will arise is that regardless of
whether the original signal f is periodic, we will be forced to think of the finite sampling
(f(n))0≤n<N as a discrete periodic signal with period N . This will lead to border effects
which must be accounted for. However, the circular convolution theorem and Fast Fourier
Transform will allow for fast computations of convolution operators.

Let x, y ∈ CN , which are vectors of length N , e.g., N samples of a signal f such that
x[n] = f(n) for 0 ≤ n < N . The inner product between x and y is:

〈x, y〉 =
N−1∑
n=0

x[n]y∗[n]

We must replace the sinusoids eitω (t ∈ R) and einω (n ∈ Z), which are continuous in the
frequency variable ω, with discrete counterparts. The variable ω is replaced with an index
k with 0 ≤ k < N :

ek[n] = exp

(
2πikn

N

)
, 0 ≤ n, k < N (14)

The Discrete Fourier Transform (DFT) of x is defined as:

x̂[k] = 〈x, ek〉 =
N−1∑
n=0

x[n] exp

(
−2πikn

N

)
, 0 ≤ k < N

The following theorem shows that the set of vectors {ek}0≤k<N is an orthogonal basis for
CN .

Theorem 3.6. The family of vectors {ek}0≤k<N as defined in (14) is orthogonal basis for
CN .

Thus the DFT is a bijection and hence invertible. Since ‖ek‖2 = N for all k, it follows
from Theorem 3.6 that x can be represented in the orthogonal basis {ek}0≤k<N as:

x[n] =
N−1∑
k=0

〈x, ek〉
‖ek‖2

ek[n] =
1

N

N−1∑
k=0

x̂[k] exp

(
2πikn

N

)

1



This gives the inverse DFT.
We would like a convolution theorem for the DFT similar to the convolution theorem for

L1(R) functions and `1(R) sequences. We define convolution of x, y ∈ CN by first extending
them to signals x0, y0 ∈ `1(R) defined as:

x0[n] =

{
x[n] 0 ≤ n < N
0 n < 0 or n ≥ N

We then define the convolution of x and y as the convolution of x0 and y0, and keep only
the values with a chance of being nonzero:

x ∗ y[n] =
∑
m∈Z

x0[m]y0[n−m], 0 ≤ n < 2N − 1

In practice, there will be many times when you want to compute such convolutions. Indeed,
if x and y are discrete samplings of non-periodic signals f and g, respectively, computing
x∗y will give a discrete approximation for f ∗g. However, for computational reasons, we will
often not want to compute discrete convolutions directly (more on this in a bit). Indeed, it
will be better to compute such convolutions “in frequency,” which will require a convolution
theorem for the DFT. However, the discrete sinusoids {ek}0≤k<N are not eigenvectors of
discrete convolution operators Lx = x ∗ h. The vectors ek are periodic, but the standard
convolution is not; indeed, it extends the vectors x, y to a twice longer vector x ∗ y. We
therefore define a periodic version of convolution, which is called circular convolution.

To define circular convolution, rather than extending x and y with zeros, we will extend
them with a periodization over N samples:

xp[n] = x[n mod N ], n ∈ Z

The circular convolution is defined as:

x~ y[n] =
N−1∑
m=0

xp[m]yp[n−m]

Note that x~ y ∈ CN . One then has the following circular convolution theorem:

Theorem 3.7. If x, y ∈ CN , then

x̂~ y[k] = x̂[k]ŷ[k]

The key to this theorem, and the DFT more generally, is that since the discrete sinusoids
ek are periodic vectors with period N , the DFT treats all vectors x ∈ CN as periodic vectors
with period N . This manifests in the convolution theorem by requiring us to utilize circular
convolutions. However, it also means that when computing DFTs, we always need to think
of x as a periodic vector with period N . In particular, seemingly “smooth” vectors such as
x[n] = n actually have very sharp transitions once made periodic, since x[N − 1] = N − 1
and x[N ] = x[0] = 0; see Figure 5.
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Figure 5: Periodization of the ramp vector x[n] = n on RN . Taken from Figure 3.3 of A
Wavelet Tour of Signal Processing.

Remark 3.8. Notice as well, we now have the following correspondences:

• Signals f ∈ L2(R) and f̂ ∈ L2(R), otherwise no restrictions.

• Discrete, but infinite samplings a ∈ `2(Z) with a[n] = f(n), and â ∈ L2[−π, π] a 2π
periodic Fourier series in which

â(ω) =
∑
n∈Z

f̂(ω − 2πn)

• Discrete, finite samplings x ∈ CN which must be considered as N -periodic to do any
frequency calculation (e.g., Theorem 3.7). In particular, if

x[n] =
∑
p∈Z

a[n− pN ]

then x̂ ∈ CN with
x̂[k] = â(2πk/N) (see Exercise 22)

Thus a discrete, but infinite sampling of f in time/space periodizes its Fourier transform,
possibly leading to aliasing. A finite, discrete sampling in frequency also periodizes the
signal in time/space, leading to possible border effects. We must account for both of these
in practice.

The circular convolution theorem will be very important for opening up fast algorithms
for computing x ~ y. This will be made possible by the Fast Fourier Transform (FFT),
which we now describe. To motivate the algorithm, recall the DFT:

x̂[k] =
N−1∑
n=0

x[n] exp

(
−2πikn

N

)
, 0 ≤ k < N

and observe that it requires N2 (complex) multiplications and additions (N for each k). The
FFT algorithm reduces this to O(N log2N).

The FFT algorithm works through a divide and conquer approach; in these notes I will
describe the radix-2 decimation in time (DIT) algorithm. This is a recursive algorithm.
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Given x we divide the DFT summation into two sums, one for the even indices of x and one
for the odd indices of x:

x̂[k] =

N/2−1∑
n=0

x[2n] exp

(
−2πik(2n)

N

)
+

N/2−1∑
n=0

x[2n+ 1] exp

(
−2πik(2n+ 1)

N

)

=

N/2−1∑
n=0

x[2n] exp

(
−2πikn

N/2

)
+ e−2πik/N

N/2−1∑
n=0

x[2n+ 1] exp

(
−2πikn

N/2

)
The second line looks like the sum of two DFTs of length N/2 signals. Indeed, define
xe, xo ∈ RN/2 as:

xe[n] = x[2n], 0 ≤ n < N/2

xo[n] = x[2n+ 1], 0 ≤ n < N/2

and notice that we have

x̂e[k] =

N/2−1∑
n=0

x[2n] exp

(
−2πikn

N/2

)
, 0 ≤ k < N/2

x̂o[k] =

N/2−1∑
n=0

x[2n+ 1] exp

(
−2πikn

N/2

)
, 0 ≤ k < N/2

This allows us to recover x̂[k] for 0 ≤ k < N/2 as:

x̂[k] = x̂e[k] + e−2πik/N x̂o[k], 0 ≤ k < N/2 (15)

For the frequencies N/2 ≤ k < N , we use the fact that the DFT is periodic and observe that

x̂e[k +N/2] = x̂e[k] and x̂o[k +N/2] = x̂o[k]

We thus obtain:

0 ≤ k < N/2, x̂[k +N/2] = x̂e[k] + e−2πi(k+N/2)/N x̂o[k]

= x̂e[k]− e−2πik/N x̂o[k] (16)

Putting together (15) and (16) we obtain x̂[k] for all 0 ≤ k < N . Notice that already we
have reduced computations. Indeed, the one step algorithm proceeds by first dividing x
into even and odd indices signals, computing the two length N/2 DFTs, and recombining
as above. The two length N DFTs cost 2(N/2)2 = N2/4 multiplications and additions, and
the combination costs N additions and multiplications. Thus we have replaced N2 complex
multiplications and additions with N2/2 +N complex multiplications and additions, which
is already better for N ≥ 3.
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Figure 6: Recursive subdivision scheme of the FFT algorithm for N = 8.

Now for simplicity, suppose N = 2p. The O(N log2N) FFT algorithm is obtained by
recursively subdividing the original signal x, according to the same procedure as outlined
above into “even” and “odd” components, until we have N signals of length one; Figure 6
illustrates the idea for N = 8. The algorithm then “computes” N length one DFTs - notice
that these just return the value of each length one signal, so no computation is actually
performed. The algorithm then forms N/2 length two DFTs the next level up by combining
the pairs of length one DFTs that have the same parent signal, and multiplying the “odd”
length one signal by the appropriate complex value before combination. At each level we
incur a cost of O(N), and there are p = log2N levels; thus the total cost of the algorithm is
O(N log2N).

The FFT algorithm is remarkable for turning an O(N2) calculation into an O(N logN)
calculation with no loss of accuracy. For this reason it is a pillar of digital signal processing.
However, it is fundamentally an algebraic property of the DFT, based on symmetries. As
such, the algorithm is “fragile,” and in particular, if you do not uniformly sample your signal
f , you cannot apply the FFT algorithm. That however is a discussion for another day (or
class).

The FFT algorithm allows us to compute convolutions x ∗ y fast. Suppose the x, y ∈ CN

as usual; if we compute x∗y directly it will cost us O(N2) calculations. In order to calculate
the non-circular convolution faster, we can use the circular convolution Theorem 3.7, which
will allow us to leverage the FFT algorithm. The main idea is that instead of computing
x ∗ y directly, we compute x̂ and ŷ, each costing O(N logN) calculations, then we compute
the multiplication x̂[k]ŷ[k] for 0 ≤ k < N , costing O(N) calculations, and then we compute
the inverse Fourier transform of (x̂[k]ŷ[k])0≤k<N with another FFT, which costs O(N logN)
calculations; the total run time of the algorithm if O(N logN), which in practice (depending
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upon the exact FFT algorithm you use) will be better for N ≥ 32. One thing that we
have not addressed though, is that the convolution theorem for finite length signal applies
to circular convolution. If we do not account for this, we will run into border effects since we
will be computing x~ y instead of x ∗ y. To fix this issue, we zero pad x and y by defining:

x0[n] =

{
x[n] 0 ≤ n < N
0 N ≤ n < 2N

The signal x0 ∈ C2N and is just the signal x but with N zeros appended to the back of it.
One can then verify that:

x0 ~ y0[n] = x ∗ y[n], 0 ≤ n < 2N

Thus we apply the fast FFT based algorithm to x0 and y0 (rather than x and y) to obtain
x ∗ y in O(N logN) time.

Exercise 19. Read Section 3.3 of A Wavelet Tour of Signal Processing.

Exercise 20. Read Section 3.4 of A Wavelet Tour of Signal Processing.

Exercise 21. Let x̂[k] be the DFT of a finite signale x ∈ CN . Define a signal y ∈ C2N by:

ŷ[N/2] = ŷ[3N/2] = x̂[N/2]

and

ŷ[k] =


2x̂[k] 0 ≤ k < N/2
0 N/2 < k < 3N/2
2x̂[k −N ] 3N/2 < k < 2N

Prove that y is an interpolation of x that satisfies y[2n] = x[n] for all 0 ≤ n < N .

Exercise 22. We want to compute numerically the Fourier transform of f(t). Let a[n] =
f(n) for n ∈ Z be the countably infinite discrete sampling of f and let x ∈ CN be the
periodization of a over the period of length N :

x[n] =
∑
p∈Z

a[n− pN ]

(a) Prove that the DFT of x is related to the Fourier series of a and to the Fourier transform
of f by the following formula:

x̂[k] = â(2πk/N) =
∑
`∈Z

f̂

(
2πk

N
− 2π`

)

(b) Suppose that |f(t)| and |f̂(ω)| are negligible when t /∈ [−t0, t0] and ω /∈ [−ω0, ω0].
Relate N to t0 and ω0 so that one can compute an approximate value of f̂(ω) for all
ω ∈ R by interpolating the samples x̂ ∈ CN . Is it possible to compute exactly f̂(ω)
with such an interpolation formula?
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Exercise 23. We are going to implement the FFT and fast convolution algorithms:

(a) Implement the DFT algorithm (programming language of your choice). Record the
runtime for many values of N , and plot it as a function of N . Do you see the quadratic
scaling? Turn in your code and plot(s).

(b) Make precise the O(N logN) FFT algorithm described above and implement it on
your own for N = 2p. Test the algorithm for accuracy by comparing its outputs to
the outputs of your DFT algorithm. Test the algorithm for speed by comparing the
runtime for numerous values of N to the runtimes your recorded for the DFT. For
which value of N does your FFT algorithm become faster? Turn in your code, at least
one output showing that the DFT and FFT codes produce the same results, and a
plot of the FFT runtimes as a function of N (you can combine this plot with the DFT
plot).

(c) Using either your own FFT and inverse FFT code, or built in code (in Matlab or
Python, for example) since you are not required to write your own inverse FFT code,
implement an algorithm to compute x∗y (for x, y ∈ CN) in O(N logN) time. Verify the
accuracy by comparing against convolution code that computes x ∗ y directly (either
your own code, or built in code), and compare the runtimes. For which N is your
O(N logN) convolution code faster?
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4 Time Meets Frequency
Chapter 4 of A Wavelet Tour of Signal Processing [1].

4.1 Time Frequency Atoms

Section 4.1 of A Wavelet Tour of Signal Processing [1].

A linear time frequency transform correlates the signal f(t) with a dictionary of waveforms
that are concentrated in time and frequency; these waveforms are called time frequency
atoms. Denote a general dictionary of time frequency atoms by:

D = {φγ}γ∈Γ, φγ ∈ L2(R), ‖φγ‖2 = 1

where Γ is a (multi)-index set. The time frequency transform of f ∈ L2(R) in the dictionary
D computes

Φf(γ) = 〈f, φγ〉 =

∫
R
f(t)φ∗γ(t) dt

Recall that the Fourier transform of f is:

f̂(ω) = 〈f, eω〉 =

∫
R
f(t)e−iωt dt , eω(t) = eiωt

It is not a perfect analogue for the time frequency transform Φ since eω /∈ L2(R), but both
transforms analyze f by testing the signal against a family of waveforms. Let us now explore
time-frequency transforms in more detail.

Recall the definitions of the time mean u, frequency mean ξ, time variance σ2
t , and

frequency variance σ2
ω of a function f ∈ L2(R), first defined when we studied the uncertainty

principle in Section 2.4. Apply them to the dictionary D for each time frequency atom φγ,
and denote the corresponding quantities by

uγ, ωγ, σt(γ), σω(γ)

The waveform φγ is essentially supported in time on an interval of length σt(γ), centered
at uγ, while its Fourier transform φ̂γ is essentially supported in frequency on an interval

1



Figure 7: Heisenberg box representing the essential time frequency support of φγ

of length σω(γ), centered at ξγ. Thus the joint time frequency support of φγ in the time
frequency plane (t, ω) is given by a Heisenberg box centered at (uγ, ξγ) having time width
σt(γ) and frequency width σω(γ); see Figure 7.

The Parseval formula (Theorem 2.12) proves that:

Φf(γ) =

∫
R
f(t)φ∗γ(t) dt =

1

2π

∫
R
f̂(ω)φ̂∗γ(ω) dω

Thus we see that Φf(γ) only depends upon the values of f(t) and f̂(ω) in the Heisenberg
box of φγ. In particular, Φf(γ) only measures the frequencies of f in a neighborhood of ξγ,
and it only measures these frequencies in a neighborhood of the time uγ. Because of the
uncertainty principle (Theorem 2.18), we know that

σt(γ)σω(γ) ≥ 1

2

Thus it is impossible to measure precisely the frequency response f̂(ω0) at the time t0. The
best we can do is measure the time frequency response of f in a Heisenberg box of area 1/2.
Theorem 2.18 proves that the time frequency atoms that achieve this optimal time frequency
localization are given by Gabor functions; we will come back to this point shortly when we
introduce the windowed Fourier transform.

For pattern recognition and machine learning tasks, it often important to construct time
frequency representations that behave well with respect to translations of the signal f(t)
(and in 2D, rotations as well). Define fu(t) = f(t − u) as the translation of f by u, and
notice that:

Φfu(γ) =

∫
R
f(t− u)φ∗γ(t) dt =

∫
R
f(t)φ∗γ(t+ u) dt = 〈f, φ−u,γ〉,

where φu,γ(t) = φγ(t − u). This motivates the construction of translation invariant dictio-
naries. A translation invariant dictionary is obtained by starting with a family of generators
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{φγ}γ∈Γ, and augmenting this family with all translates of each time frequency atom φγ:

D = {φu,γ}u∈R,γ∈Γ

Set:
φγ(t) = φ∗γ(−t)

The resulting time frequency transform with a translation invariant dictionary is given by:

Φf(u, γ) = 〈f, φu,γ〉 =

∫
R
f(t)φ∗γ(t− u) dt = f ∗ φγ(u)

It thus corresponds to a filtering of f by the time-frequency waveforms {φγ}γ∈Γ.

Exercise 24. Read Section 4.1 of A Wavelet Tour of Signal Processing.

4.2 Windowed Fourier Transform

Section 4.2 of A Wavelet Tour of Signal Processing [1].

The Fourier transform f̂(ω) tells us every frequency in the signal f(t), but it does not tell us
when such frequencies are present. For example, in music we hear the time variation of the
sound frequencies. Similarly, images with vastly different patterns in them may correspond
to different frequencies, localized not over time but space; see the picture of the castle in
Figure 8 for an example.

A natural way to account for these localized structures is to localize the Fourier transform
with a window function. Let g be a real symmetric window g(t) = g(−t), which has support
localized around t = 0 (e.g., a Gaussian g(t) = 1√

2πσ
e−t

2/2σ2). Translations of this window
by u ∈ R, and modulations of this window by the frequency ξ ∈ R, yield a Gabor type
dictionary :

D = {gu,ξ}u,ξ∈R, gu,ξ(t) = g(t− u)eiξt

The window is normalized so that ‖g‖2 = 1, which implies that ‖gu,ξ‖2 = 1 for all (u, ξ) ∈ R2.
The resulting windowed Fourier transform (also known as the short time Fourier transform,
or Gabor transform) is:

Sf(u, ξ) = 〈f, gu,ξ〉 =

∫
R
f(t)g(t− u)e−iξt dt

Notice that Sf(u, ξ) computes a localized version of the Fourier transform of f(t), in which
the Fourier integral is localized around u by the window g(t− u).

The energy density of the windowed Fourier transform is the spectrogram:

PSf(u, ξ) = |Sf(u, ξ)|2 =

∣∣∣∣∫
R
f(t)g(t− u)e−iξt dt

∣∣∣∣2
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Figure 8: Picture of a castle, taken from Wikipedia. Different regions of the picture have
different patterns, such as the sky, the trees, and the castle itself. These patterns have
different frequency responses, which are spatially localized.

The spectrogram removes the phase of Sf(u, ξ) and measures the energy of f in a time
frequency neighborhood of (u, ξ) specified by the Heisenberg box of gu,ξ. The size of these
Heisenberg boxes is in fact independent of (u, ξ), as we now show.

First note that since g(t) is even, gu,ξ is centered at u. The variance around u is:

σ2
t =

∫
R
(t− u)2|gu,ξ(t)|2 dt =

∫
R
t2|g(t)|2 dt

The Fourier transform ĝ of g is real and symmetric because g is real and symmetric. We
also compute the Fourier transform of gu,ξ as (set eξ(t) = eiξt):

ĝu,ξ(ω) = ĝu · eξ(ω)

= (2π)−1ĝu ∗ êξ(ω)

= (2π)−1(e−u · ĝ) ∗ 2πδξ(ω)

= e−iu(ω−ξ)ĝ(ω − ξ)

It follows that ĝu,ξ is centered at ξ, and

σ2
ω =

1

2π

∫
R
(ω − ξ)2|ĝu,ξ(ω)|2 dω =

1

2π

∫
R
ω2|ĝ(ω)|2 dω

These calculations show that the Heisenberg boxes of gu,ξ centered at (u, ξ) with an area
σtσω that is independent of the location (u, ξ). Thus the windowed Fourier transform has

4



Figure 9: Heisenberg boxes of the windowed Fourier time frequency atoms.

the same resolution across the time frequency plane; see Figure 9. This is one of its defining
properties; other time-frequency transforms that we will encounter (e.g., wavelets), will
utilize Heisenberg boxes of different dimensions depending on their location in the time-
frequency plane.

Exercise 25. Read Section 4.2 of A Wavelet Tour of Signal Processing, up to but not
including Section 4.2.1.

4.2.1 Parseval for Windowed Fourier

The approach in this section and the next section follows the treatment in [5, Chapter 3]. For
a more in depth treatment of the windowed Fourier transform and time frequency analysis,
[5] is an excellent resource.

Recall that for a window g ∈ L2(R) the windowed Fourier transform of f ∈ L2(R) is defined
as:

Sgf(u, ξ) =

∫
R
f(t)g(t− u)e−iξt dt

Here we write Sgf rather than Sf to emphasize the dependence upon the window choice
g. Up till now we have been a little sloppy in that, while we know the windowed Fourier
transform is well defined pointwise, we do not know if this transform maps f into some
nice functional class. To that end, the next theorem is an analogue of Parseval’s formula
(Theorem 2.12) for the windowed Fourier transform and for windows g in a subclass of L2(R).
It shows that Sg : L2(R) → L2(R2). Like the original Parseval formula it is also extremely
useful.
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Theorem 4.1. Let f, h ∈ L2(R) and let g be a real symmetric function with g ∈ L1(R) ∩
L2(R) and ‖g‖2 = 1. Then:

〈f, h〉 =
1

2π
〈Sgf, Sgh〉L2(R2)

Proof. We will need another fundamental result from real analysis, which is Young’s inequal-
ity. Suppose that f1 ∈ Lp(R), f2 ∈ Lq(R), and

1

p
+

1

q
=

1

r
+ 1

Then
‖f1 ∗ f2‖r ≤ ‖f1‖p‖f2‖q (17)

Now define fξ as fξ(u) = Sgf(u, ξ), so that we think of the windowed Fourier transform
as a function in u with a parameter ξ. We first show that fξ ∈ L2(R) and then compute its
Fourier transform. Additionally, set gξ(t) = g(t)eiξt; we can rewrite fξ(u) as (using that g is
symmetric):

fξ(u) =

∫
R
f(t)g(t− u)e−iξt dt

= e−iuξ
∫
R
f(t)g(u− t)eiξ(u−t) dt

= e−iuξf ∗ gξ(u)

It thus follows, using Young’s inequality, that

‖fξ‖2 = ‖f ∗ gξ‖2 ≤ ‖g‖1‖f‖2

The Fourier transform of fξ is computed as:

f̂ξ(ω) = f̂(ω + ξ)ĝξ(ω + ξ) = f̂(ω + ξ)ĝ(ω)

Let us now compute the inner product between Sgf and Sgh. Since fξ, hξ ∈ L2(R) we
can use Parseval’s formula and our computation for their Fourier transform to get:

1

2π
〈Sgf, Sgh〉 =

1

2π

∫
R

∫
R
Sgf(u, ξ)Sgh

∗(u, ξ) du dξ

=
1

2π

∫
R

(∫
R
fξ(u)h∗ξ(u) du

)
dξ

=
1

(2π)2

∫
R

∫
R
f̂(ω + ξ)ĥ∗(ω + ξ)|ĝ(ω)|2 dω dξ (18)
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We would like to switch the order of integration using Fubini. To do so we need to bound:∫
R

∫
R
|f̂(ω + ξ)ĥ∗(ω + ξ)|ĝ(ω)|2 dω dξ

=

∫
R
|ĝ(ω)|2

∫
R
|f̂(ω + ξ)ĥ∗(ω + ξ)| dξ dω

≤
∫
R
|ĝ(ω)|2

(∫
R
|f̂(ω + ξ)|2 dξ

) 1
2
(∫

R
|ĥ(ω + ξ)|2 dξ

) 1
2

dω

≤ (2π)2‖g‖2
2‖f‖2‖h‖2 <∞

Thus we can apply Fubini and continuing from (18) we have:

(18) =
1

2π

∫
R
|ĝ(ω)|2

(
1

2π

∫
R
f̂(ω + ξ)ĥ∗(ω + ξ) dξ

)
dω

=
1

2π

∫
R
|ĝ(ω)|2

(
1

2π

∫
R
f̂(ξ)ĥ∗(ξ) dξ

)
dω

= 〈f, h〉 1

2π

∫
R
|ĝ(ω)|2 dω

= 〈f, g〉

The windowed Fourier transform can be extended to any real, symmetric window g ∈
L2(R) using a density argument. Using this extension, we can also extend Theorem 4.1 to
any real symmetric window g ∈ L2(R).

Corollary 4.2. Let f, h ∈ L2(R) and let g be a real symmetric function with g ∈ L2(R) and
‖g‖2 = 1. Then:

〈f, h〉 =
1

2π
〈Sgf, Sgh〉L2(R2)

It follows from Theorem 4.1 that Sg : L2(R) → L2(R2) and that it preserves the norm,
up to a factor of

√
2π. This is the analog of the Plancheral formula; we collect it in the next

corollary.

Corollary 4.3. Let g ∈ L2(R). The windowed Fourier transform is a linear map Sg :
L2(R)→ L2(R2), and it is also an isometry up to a factor of

√
2π:

‖f‖2 =
1√
2π
‖Sgf‖L2(R2)

Exercise 26. Prove Corollary 4.2.
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4.2.2 Inversion for Windowed Fourier

The windowed Fourier transform is highly redundant and covers the entire time frequency
plane. Intuitively, we should have more than enough information to invert this transform.
Indeed, that is the case:

Theorem 4.4. Let g be a real symmetric window with g ∈ L2(R) and ‖g‖2 = 1. Then for
all f ∈ L2(R),

f(t) =
1

2π

∫
R

∫
R
Sgf(u, ξ)g(t− u)eiξt du dξ

We are going to prove the inversion theorem using techniques from functional analysis.
We collect the main points first. Let H be a Hilbert space with norm ‖ ·‖, and let ` : H → C
be a linear functional. We say that ` is continuous if for v, h ∈ H we have

lim
‖h‖→0

‖`(v + h)− `(v)‖ = 0

The linear functional ` is bounded if there exists a universal constant C ≥ 0 such that

|`(v)| ≤ C‖v‖, ∀ v ∈ H

It is a well known fact that linear functionals are continuous if and only if they are bounded.
Now let ` : H → C be a continuous linear functional. The Riesz Representation Theorem

states that for each such `, there exists a unique h ∈ H such that

`(v) = 〈v, h〉, ∀ v ∈ H

Since it is clear that the mappings v 7→ 〈v, h〉 are continuous linear functionals for very
h ∈ H, the Riesz representation theorem shows that there is a bijective correspondence
between H and continuous linear functionals on H.

Finally, suppose now that F : R → H, so that for each u ∈ R, F (u) is an element of
the Hilbert space H. One can think of F as a “vector valued function.” For example, if
H = L2(R) then F (u)(t) is a square integrable function in the variable t ∈ R for each u ∈ R.
Using F , one can define a linear functional

`F (v) =

∫
R
〈v, F (u)〉 du

1



If `F is bounded / continuous, then by the Riesz representation theorem there exists a unique
element f̃ ∈ H such that `F (v) = 〈v, f̃〉. Thus

〈v, f̃〉 =

∫
R
〈v, F (u)〉 du, ∀ v ∈ H (19)

We write
f̃(t) =

∫
R
F (u)(t) du

which means that (19) holds; this is a type of weak equality. We are going to prove Theorem
4.4 in this sense.

Proof of Theorem 4.4. Define a linear functional ` : L2(R)→ C as

`(h) =
1

2π
〈Sgh, Sgf〉L2(R2), ∀h ∈ L2(R)

By the Parseval theorem for windowed Fourier transforms (Theorem 4.1), we have:

`(h) = 〈h, f〉 ≤ ‖f‖2‖h‖2

Thus ` is a bounded, and hence a continuous, linear functional. At this point we could apply
the Riesz representation theorem, but it would just tell us what we already know which is
that `(h) = 〈h, f〉. Instead we come up with a “vector valued function” F (u, ξ) ∈ L2(R) and
show that

`(h) =

∫
R

∫
R
〈h, F (u, ξ)〉 du dξ (20)

To do so, recall that we defined

gu,ξ(t) = g(t− u)eiξt

and that we can write
Sf(u, ξ) = 〈f, gu,ξ〉

We have:

`(h) =
1

2π
〈Sgh, Sgf〉L2(R2) =

1

2π

∫
R

∫
R
Sgh(u, ξ)Sgf

∗(u, ξ) du dξ

=
1

2π

∫
R

∫
R
〈h, gu,ξ〉Sgf ∗(u, ξ) du dξ

=

∫
R

∫
R
〈h, (2π)−1Sgf(u, ξ)gu,ξ〉 du dξ

Therefore we have verified (20) with

F (u, ξ)(t) =
1

2π
Sgf(u, ξ)gu,ξ(t)
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It follows that `(h) can be written as

`(h) = 〈h, f̃〉

with
f̃(t) =

∫
R
F (u, ξ) du dξ =

1

2π

∫
R
Sgf(u, ξ)gu,ξ(t) du dξ

But then `(h) = 〈h, f〉 = 〈h, f̃〉 for all h ∈ L2(R), and so f = f̃ (in the weak sense) and the
inversion formula is proved.

Exercise 27. Read Section 4.2.1 of A Wavelet Tour of Signal Processing.

4.2.3 Choice of the Window

The time frequency localization of the window g can be modified with a scaling. Suppose
that the Heisenberg boxes of the time frequency atoms gu,ξ have time width σt and frequency
width σω. Let

gs(t) = s−1/2g(s−1t)

be a dilation of g by the time scale s. One can show that if we replace the window g with gs,
then the resulting Heisenberg box has time width sσt and frequency width s−1σω. While the
area remains σtσω, the resolution in time is modified by s while the resolution in frequency
is modified by s−1. Depending on the signal type we may want better localization in time
or frequency, or a balance of both; the parameter s allows us to adjust accordingly while
keeping the time frequency area of each box constant.

In numerical applications, the localized waveforms gu,ξ(t) can only be sampled a finite
number of times, which means the support of the window g must be compact or it must be
restricted to a compact set (as in the case of a Gaussian window). If g has compact support,
then ĝ must have an infinite support. Since g is symmetric and often g(t) ≥ 0 for all t, ĝ(ω)
will be symmetric with a main “lobe” (bump) centered at ω = 0, which decays to zero with
oscillations; see Figure 10.

The frequency resolution of the windowed Fourier transform is determined by the spread
of ĝ around ω = 0. Previously we used σω to measure this spread, however the following
three parameters give a more fine grained measure:

• The bandwidth ∆ω, which is defined by:

|ĝ(∆ω/2)|2

|ĝ(0)|2
=

1

2

This measures the energy concentration of ĝu,ξ(ω) around ω = ξ.

• The maximum amplitude A of the first side lobes located at ω = ±ω0. The important
thing is the side lobe amplitude relative to the amplitude of the central lobe at ω = 0;
this ratio can be measured in decibels:

A = 10 log10

|ĝ(ω0)|2

|ĝ(0)|2
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Figure 10: The energy spread of ĝ(ω) is measured by its bandwidth and the maximum
amplitude A of the first side lobes, located at ±ω0.

Side lobes create echos of the response Sf(u, ξ) at Sf(u, ξ ± ω0). If A is small (i.e.,
very negative), then the side lobe magnitude is small relative the main lobe amplitude
and these echos will be negligible relative to the response at ξ.

• The polynomial exponent p, which gives the asymptotic decay of |ĝ(ω)| for large fre-
quencies,

|ĝ(ω)| = O(|ω|−(p+1))

This is important of several localized frequency phenomena occur close together in the
time frequency plane. In this case it can be hard to “unmix” the various frequency
tones unless p is large. We obtain a large p by using a smooth window.

Exercise 28. Read Sections 4.2.2 and 4.2.3 of A Wavelet Tour of Signal Processing.

4.3 Time Frequency Geometry of Instantaneous Frequencies

When listening to music we perceive several frequencies that change with time. This leads
to the notion of an instantaneous frequency, which we define here at the outset.

4.3.1 Instantaneous Frequency

Section 4.4.1 of A Wavelet Tour of Signal Processing

If f : R→ C is complex valued then f(t) can be uniquely represented as

f(t) = a(t)eiθ(t)

where a(t) = |f(t)| is the amplitude of f(t) and θ(t) ∈ [0, 2π) is the phase of f(t). In this
case, we define the instantaneous frequency of f(t) as θ′(t).
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For real valued signals f : R→ R, we would like to decompose f(t) as

f(t) = α(t) cosϑ(t)

However, this representation is not unique since it has two parameters α(t) and ϑ(t) for each
real value f(t). We settle on a particular representation by defining the analytic part of f(t).

A function ha(t) is analytic if

ĥa(ω) = 0, ∀ω < 0

An analytic function is necessarily complex valued but is entirely characterized by its real
part. Indeed, define h(t) = <[ha(t)] to be the real part of ha(t). Its Fourier transform is:

ĥ(ω) =
ĥa(ω) + ĥ∗a(−ω)

2

which in turn yields:

ĥa(ω) =


2ĥ(ω) ω > 0

ĥ(ω) ω = 0
0 ω < 0

If we start with a real valued signal f ∈ L1(R) then we define the analytic part fa(t) of
f(t) as the inverse Fourier transform of

f̂a(ω) =


2f̂(ω) ω > 0

f̂(ω) ω = 0
0 ω < 0

Since the analytic part fa(t) of f(t) is complex valued, it can be decomposed uniquely as

fa(t) = a(t)eiθ(t)

Since f(t) = <[fa(t)] we have that

f(t) = a(t) cos θ(t)

This representation is uniquely defined because it is derived from the analytic part of f . We
call a(t) the analytic amplitude of f(t) and θ′(t) its instantaneous frequency.

As a somewhat simple example we compute the analytic part of the real valued signal

f(t) = a cos(ω0t+ θ0) =
a

2

(
ei(ω0t+θ0) + e−i(ω0t+θ0)

)
Its Fourier transform is:

f̂(ω) = πa
(
eiθ0δ(ω − ω0) + e−iθ0δ(ω + ω0)

)
5



If ω0 > 0, then the Fourier transform of the analytic part is:

f̂a(ω) = 2f̂(ω) = 2πaeiθ0δ(ω − ω0), ω ≥ 0

and thus
fa(t) = aei(ω0t+θ0)

If we replace the constant a with an amplitude function a(t), so that

f(t) = a(t) cos(ω0t+ θ0)

then the Fourier transform of f(t) is:

f̂(ω) =
1

2

(
eiθ0 â(ω − ω0) + e−iθ0 â(ω + ω0)

)
If the variations of a(t) are slow compared to the period 2π/ω0, then it must be that supp â ⊆
[−ω0, ω0]. In this case:

f̂a(ω) = 2f̂(ω) = eiθ0 â(ω − ω0), ω ≥ 0

and
fa(t) = a(t)ei(ω0t+θ0)

Thus the amplitude is a(t) and the instantaneous frequency is ω0.
Let us now consider a slightly more complicated example:

f(t) = a cos(ω1t) + a cos(ω2t)

In this case the analytic part of the signal is given by:

fa(t) = aeiω1t + aeiω2t

= 2a cos

(
(ω1 − ω2)t

2

)
ei(ω1+ω2)t/2

Thus the instantaneous frequency is

θ′(t) =
ω1 + ω2

2

and the amplitude is

a(t) = 2a

∣∣∣∣cos

(
(ω1 − ω2)t

2

)∣∣∣∣
The result is unsatisfying because the instantaneous frequency is the average of the frequen-
cies of the two cosine waves. We would have no indication (forgetting the amplitude) that
the signal is not in fact one cosine with frequency (ω1 + ω2)/2, but rather two separate
cosines.
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More generally, one would like to be able to analyze signals of the form

f(t) =
K∑
k=1

ak(t) cos θk(t) (21)

where ak(t) and θk(t) vary slowly in time. Such decompositions can be used to model
music and other auditory signals. We want to isolate the different amplitudes ak(t) and
instantaneous frequencies θ′k(t). A windowed Fourier transform can help with this.

Exercise 29. Read Section 4.4.1 of A Wavelet Tour of Signal Processing.

Exercise 30. The analytic part xa[n] of a real valued discrete signal x ∈ RN is defined by

x̂a[n] =


x̂[k] k = 0, N/2
2x̂[k] 0 < k < N/2
0 N/2 < k < N

(a) Suppose that y ∈ CN is a complex valued discrete signal and let yr[n] = <(y[n]) be
the real part of y. Prove that

ŷr[k] =
ŷ[k] + ŷ∗[−k]

2

(b) For x ∈ RN prove that <(xa) = x.

Exercise 31. Let f(t) = eiθ(t) and let g be a real, symmetric window function with ‖g‖2 = 1.

(a) Prove that ∫
R
|Sf(u, ξ)|2 dξ = 2π, ∀u ∈ R

(b) Prove that ∫
R
ξ|Sf(u, ξ)|2 dξ = 2π

∫
R
θ′(t)|g(t− u)|2 dt, ∀u ∈ R

and interpret this result.

Exercise 32. We are going to investigate further the windowed Fourier transform with a
Gaussian window.

(a) Let gσ(t) be the Gaussian window:

gσ(t) =
1

(2πσ2)1/4
e−t

2/4σ2

which is normalized so that ‖g‖2 = 1 and the time spread of g(t) is σ2
t = σ2. In

practice, even though g(t) has infinite support, we will have to sample it over a finite
interval [−N/2, N/2) of length N . Let gσ,N(t) be the restriction of gσ(t) to this interval:

gσ,N(t) = 1[−N/2,N/2)(t)gσ(t)
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Give an upper bound for the error ‖gσ − gσ,N‖2 in terms of σ and N . Recall our
intuition that the “essential” width of gσ(t) is σ. If we take N = σ, how big is the
bound on the error? Is this error acceptable?

(b) Implement a discrete version of the windowed Fourier transform. Assume that your
signal is x ∈ RN with N even. For each 0 ≤ k < N , compute the discrete vectors:

gσ,k[n] =

{
gσ(n) exp

(
2πikn
N

)
0 ≤ n < N/2

gσ(n−N) exp
(

2πikn
N

)
N/2 ≤ n < N

Define Sσx[n, k] as:

Sσx[n, k] = exp

(
−2πikn

N

)
· (x~ gσ,k)[n], 0 ≤ n < N, 0 ≤ k < N

(You should convince yourself this definition is consistent with the definition above for
signals f). Use your work on the earlier exercises to get a fast implementation with
O(N2 logN) run time. Then analyze the signal f(t) defined as:

f(t) = cos
( π
N
t2
)

with a sampling

x[n] =

{
f(n) 0 ≤ n < N/2
f(n−N) N/2 ≤ n < N

Compute the power spectrum of x, which is |x̂[k]|2, and the spectrogram PSx[n, k] =
|Sσx[n, k]|2. Plot them both and give an interpretation of your results.
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4.3.2 Windowed Fourier Ridges

Section 4.4.2 of A Wavelet Tour of Signal Processing.

We are going to use the windowed Fourier transform, and in particular the local maxima
of the windowed Fourier transform, to isolate individual amplitudes ak(t) and instantaneous
frequencies θ′k(t) as in the signal model (21), repeated here:

f(t) =
K∑
k=1

ak(t) cos θk(t)

We make some additional assumptions on the real symmetric window g(t). We suppose
that:

• supp g = [−1/2, 1/2]

• g(t) ≥ 0 so that |ĝ(ω)| ≤ ĝ(0) for all ω ∈ R

• ‖g‖2 = 1 but also ĝ(0) =
∫
g(t) dt = ‖g‖1 ≈ 1

For a scale σ set
gσ(t) = σ−1/2g(σ−1t)

Note that
supp gσ = [−σ/2, σ/2] and ‖gσ‖2 = 1

We define the windowed Fourier transform with the scale parameter σ as:

Sσf(u, ξ) =

∫
R
f(t)gσ(t− u)e−iξt dt

The next theorem relates Sσf(u, ξ) to the instantaneous frequency of f(t).

Theorem 4.5. Let f(t) = a(t) cos θ(t). If ξ ≥ 0, then

Sσf(u, ξ) =

√
σ

2
a(u)ei[θ(u)−ξu]

(
ĝ(σ[ξ − θ′(u)]) + ε(u, ξ)

)

1



where
|ε(u, ξ)| ≤ εa,1(u, ξ) + εa,2(u, ξ) + εθ,2(u, ξ) + sup

|ω|≥σθ′(u)

|ĝ(ω)|

with
εa,1(u, ξ) ≤ σ|a′(u)|

|a(u)|
and

εa,2(u, ξ) ≤ sup
|t−u|≤σ/2

σ2|a′′(t)|
|a(u)|

Furthermore, if σ|a′(u)||a(u)|−1 ≤ 1, then

εθ,2(u, ξ) ≤ sup
|t−u|≤σ/2

σ2|θ′′(t)|

And finally, if ξ = θ′(u), then

εa,1(u, ξ) =
σ|a′(u)|
|a(u)|

|ĝ′(2σθ′(u))|

We omit the proof, which is given in pages 119–122 of A Wavelet Tour of Signal Pro-
cessing. If we can neglect the error term ε(u, ξ), then we will see that Sσf(u, ξ) enables us
to measure a(u) and θ′(u). This will be the case if a(t) and θ(t) vary slowly. In particular,
εa,1 is small if a(t) varies slowly over the whole real line, while εa,2 and εθ,2 only require the
second derivatives of a(t) and θ(t) to be small over an interval of length equal to the support
of the window g. The fourth part of the error term is small if

∆ω ≤ σθ′(u) (22)

where recall ∆ω is the bandwidth of g.
Let us now suppose that the error term can disregarded, so that

Sσf(u, ξ) ≈
√
σ

2
a(u)ei[θ(u)−ξu]ĝ(σ[ξ − θ′(u)])

Since the maximum of |ĝ(ω)| is at ω = 0, we see that for each u the spectrogram PSf(u, ξ) =
|Sσf(u, ξ)|2 is maximum at ξu = θ′(u). These time frequency points (u, ξu), which form
curves in the time frequency plane, are called ridges. At ridge points we have:

Sσf(u, ξu) = Sσf(u, θ′(u)) =

√
σ

2
a(u)ei[θ(u)−uθ′(u)](ĝ(0) + ε(u, θ′(u)))

If the bandwidth satisfies (22), then Theorem 4.5 shows that the εa,1(u, ξ) error term is
negligible, since in this case |ĝ′(2σθ′(u))| will be negligible.

We can calculate the amplitude from the ridges as well:

a(u) ≈ 2|Sσf(u, θ′(u))|√
σ|ĝ(0)|
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if the error term ε(u, θ′(u)) is small.
The spectrogram computes the instantaneous frequency by computing the magnitude of

Sσ(u, ξ) along the ridges. Another way to calculate the instantaneous frequency is to look
at the phase of Sσf(u, ξ) along the ridges. Let ΘSf(u, ξ) be the complex phase of Sσf(u, ξ),
which again if the error term can be disregarded, is just:

ΘSf(u, ξ) ≈ θ(u)− ξu

It follows that
∂ΘSf(u, ξ)

∂u
= θ′(u)− ξ

and thus the instantaneous frequency can be computed by estimating this partial derivative
and solving for its zeros.

Consider now a signal model

f(t) =
K∑
k=1

ak(t) cos θk(t)

where ak(t) and θ′k(t) have small variations over intervals of size σ and σθ′k(t) ≥ ∆ω (in other
words, we can neglect the error term). Since the windowed Fourier transform is linear, we
have:

Sσf(u, ξ) ≈
√
σ

2

K∑
k=1

ak(u)ei[θk(u)−ξu]ĝ(σ[ξ − θ′k(u)])

We can distinguish between the K different instantaneous frequencies if

ĝ(σ[θ′k(u)− θ′l(u)])� 1, ∀u ∈ R, k 6= l (23)

We can obtain this condition if the bandwidth of g satisfies

∆ω ≤ σ|θ′k(u)− θ′l(u)|, ∀u ∈ R, k 6= l

In this case, when ξ = θ′l(u), we have

Sσf(u, θ′l(u)) ≈
√
σ

2

al(u)ei[θl(u)−uθ′l(u)]ĝ(0) +
∑
k 6=l

ak(u)ei[θk(u)−uθ′l(u)]ĝ(σ[θ′l(u)− θ′k(u)])︸ ︷︷ ︸
�1


≈
√
σ

2
al(u)ei[θl(u)−uθ′l(u)]ĝ(0)

and thus we can estimate the instantaneous frequency θ′l(u) and corresponding amplitude
al(u). Notice that the ridge points are distributed along the K time frequency curves
{(u, θ′k(u)) : u ∈ R, 1 ≤ k ≤ K}. So long as these curves remain well separated (as

3



measured by (23)), we will be able to recover the instantaneous frequencies. However, if the
curves get too close, or even worse intersect, then the windowed Fourier transform will have
interference and the ridge pattern will be destroyed in that neighborhood.

We have already seen that along the ridge points the error term εa,1(u, ξ) is negligible if
the bandwidth ∆ω is small enough. But we still need make sure the error terms εa,2(u, ξ)
and εθ,2(u, ξ) are small, which means from Theorem 4.5 we need:

εa,2(u, ξ) ≤ max
k

sup
|t−u|≤σ/2

σ2|a′′k(t)|
|ak(u)|

� 1

and
εθ,2(u, ξ) ≤ max

k
sup

|t−u|≤σ/2
σ2|θ′′k(t)| � 1

These place a condition on σ in which we would like to make σ small. However, recall that
to make εa,1(u, ξ) small at the ridge points and the fourth part of the error term small, we
needed

∆ω ≤ σθ′k(u)

which means we would like to make σ large. Since supp gσ = [−σ/2, σ/2], this means we need
to carefully select the window size. Notice how this leads to a tradeoff between localization
in time and localization in frequency.

Let us now consider some examples. A linear chirp is of the form:

f̃(t) = a cos(bt2 + ct)

It is called linear because its instantaneous frequency is θ′(t) = 2bt + c. Suppose we have a
signal consisting of two linear chirps:

f(t) = a1 cos(bt2 + ct) + a2 cos(bt2)

To distinguish these two linear chirps, we need our window g to have bandwidth ∆ω satisfying

∆ω ≤ σ|θ′1(t)− θ′2(t)| = σ|c|

Since the amplitudes are constant, the error term εa,2 is zero. However, εθ,2(u, ξ) places an
upper bound on the time support, which is:

σ2|θ′′k(u)| = 2bσ2 � 1, k = 1, 2

Combining the previous two inequalities we get:

∆ω

c
≤ σ � 1√

b
=⇒ ∆ω � c√

b

Figure 11 illustrates an example.
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Figure 11: Top: Sum of two parallel linear chirps. Middle: Spectrogram. Bottom: Windowed
Fourier ridges.

5



Figure 12: Top: Sum of two hyperbolic chirps. Middle: Spectrogram. Bottom: Windowed
Fourier ridges.
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Now consider a hyperbolic chirp, which has the form:

f̃(t) = a cos

(
α

β − t

)
When t < β, it has instantaneous frequency

θ′(t) =
α

(β − t)2

which varies quickly as t approaches β. Indeed, as t → β we have θ′(t) → +∞, which
means that the instantaneous frequency increases to +∞ in a finite amount of time. This is
a problem for the windowed Fourier transform because it has a fixed scale in time, and so
cannot resolve the fast high frequency changes of the hyperbolic chirp. More precisely, for
the error term εθ,2(u, ξ) in Theorem 4.5, we have εθ,2(u, ξ) ≤ σ2|θ′′(u)| but for the hyperbolic
chirp,

σ2|θ′′(u)| = σ2α

|β − u|3
> 1, ∀ |u− β| < (σ2α)1/3

Therefore the error term is uncontrolled, which leads to a lot of interference in the time
frequency response Sσf(u, ξ). Figure 12 illustrates the point for the sum of two hyperbolic
chirps,

f(t) = a1 cos

(
α1

β1 − t

)
+ a2 cos

(
α2

β2 − t

)
Exercise 33. Read Section 4.4.2 of A Wavelet Tour of Signal Processing.

Exercise 34. Now we are going to use your windowed Fourier transform code to reproduce
some results from the book.

(a) Read Example 4.5 (p. 94) of A Wavelet Tour of Signal Processing and determine
what the signal is (write it out analytically). Then compute the windowed Fourier
transform and corresponding spectrogram, and recreate something similar to Figure
4.3(a). Provide a plot of your spectrogram.

(b) Consider the signal
f(t) = a1 cos(bt2 + ct) + a2 cos(bt2)

which consists of two real valued linear chirps. Compute the windowed Fourier trans-
form and spectrogram of f(t). Can you find a window g and parameters a1, a2, b, c
such that you can recreate something similar to Figure 4.13(a)? Provide a plot of your
spectrogram. Note: Unlike Exercise 32(b) in which you sampled the single linear chirp
on [−N/2, N/2), here sample it on [0, N) so the instantaneous frequency is monotonic.

(c) Consider the signal

f(t) = a1 cos

(
α1

β1 − t

)
+ a2 cos

(
α2

β2 − t

)
7



which consists of two hyperbolic chirps. Select parameters a1, a2, α1, α2, β1, β2 and com-
pute the windowed Fourier transform and spectrogram of f(t). Do you get something
like Figure 4.14(a)? Provide a plot of your spectrogram.

Exercise 35. We are going to compute numerically windowed Fourier ridges.

(a) Take your windowed Fourier code and add in code to estimate the Fourier ridges by
estimating the local maxima of PSf(u, ξ) = |Sσf(u, ξ)|2.

(b) Now write code to estimate Fourier ridges using the alternate approach, which was to
let ΘSf(u, ξ) be the complex phase of Sσf(u, ξ), and to solve for ξ such that

∂ΘSf

∂u
(u, ξ) = 0

(c) Test your code by computing the windowed Fourier ridges of the signals from Exercise
34. Do you get results similar to those from Figures 4.12, 4.13(b), 4.14(b) in A Wavelet
Tour of Signal Processing? Turn in your plots of the ridges.

Exercise 36. (a) Let f(t) = cos(a cos(bt)). We want to compute precisely the instanta-
neous frequency of f(t) from the ridges of its windowed Fourier transform. Find a
sufficient condition on the window support size as a function of a and b.

(b) Now let f(t) = cos(a cos(bt)) + cos(a cos(bt) + ct). In terms of the bandwidth ∆ω, find
a condition on a, b and c in order to measure both instantaneous frequencies with the
ridges of a windowed Fourier transform.

(c) Verify your calculations for (a) and (b) numerically using your windowed Fourier ridge
code from the previous exercise. Turn in plots of the spectrogram for (a) and (b) and
plots of the ridges for (a) and (b).

8



Math 994-002: Applied and Computational Harmonic Analysis, MSU, Spring 2020

Lecture 10: The Wavelet Transform
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Lecturer: Matthew Hirn

4.4 Wavelet Transforms

Section 4.3 of A Wavelet Tour of Signal Processing.

The hyperbolic chirp example illustrates that some types of signals require a transform that
can vary its scale to account for multiscale characteristics within the signal. Another example
is given in Figure 13, in which we have a signal with multiple types of behavior, some over
large scales (like the general increasing and decreasing nature of the signal) and others over
smaller scales (like the singular points). As we shall see a bit later, a multiscale approach

Figure 13: A signal with multiscale structure.

is also necessary for characterizing local singularities in a signal f(t), as it is the ability to
“zoom in,” which will allow us to achieve such analysis. This is particular important in image
processing, since natural images often have many different types of patterns.

A third motivation comes from Remark 3.5. There we defined the operator ∆j which on
the real line would map f ∈ L2(R) to:

(∆jf)(t) =

∫
R
f̂(ω)12−j≤|ω|<2−j+1(ω)︸ ︷︷ ︸

ĥj(ω)

eitω dω .

Since the frequency supports of ĥj(ω) decrease as j increases, it must be that the time
support of hj(t) increases as j increases.

All of these examples motivate the introduction of a new multiscale time frequency trans-
form, which will be the wavelet transform. A wavelet ψ ∈ L1(R) ∩ L2(R) is a function with

1



zero average, ∫
R
ψ(t) dt = 0

which is well localized in time and frequency. We normalize ψ so that ‖ψ‖2 = 1 and such
that it is centered at t = 0.

A dictionary of time frequency atoms is obtained by dilating ψ by s and translating it
by u:

D = {ψu,s}u∈R, s>0, ψu,s(t) =
1√
s
ψ

(
t− u
s

)
Note that ‖ψu,s‖2 = 1 for all (u, s). The wavelet transform of f ∈ L2(R) computes:

Wf(u, s) = 〈f, ψu,s〉 =

∫
R
f(t)

1√
s
ψ∗
(
t− u
s

)
dt

The wavelet dictionary is a translation invariant dictionary, and hence can be written as
a family of convolutions. Set

ψs(t) =
1√
s
ψ∗
(
−t
s

)
and observe that

Wf(u, s) = f ∗ ψs(u)

If we set fs(u) = Wf(u, s), then:

f̂s(ω) = f̂(ω)ψ̂s(ω), ψ̂s(ω) =
√
sψ̂∗(sω)

Since ψ has zero average, the support ψ̂(ω) must be away from ω = 0. It follows that the
wavelet transform computes a bandpass filtering of f with a family dilated bandpass filters
ψs.

Wavelets can be either real valued or complex valued. Often in the latter case they are
taken to be complex analytic or nearly complex analytic. Such wavelet transforms are good
for analyzing instantaneous frequencies, which we studied previously with the windowed
Fourier transform. Real valued wavelets, on the other hand, are good for detecting sharp
transitions in a signal, such as singular points. In this case the wavelets are defined as
multiscale derivative operators. We will start with complex analytic wavelets since they will
parallel the windowed Fourier transform to a certain degree, and then study real valued
wavelets.

Exercise 37. Read the first part of Section 4.3 of A Wavelet Tour of Signal Processing, up
to (but not including) Section 4.3.1.
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4.4.1 Analytic Wavelet Transform

Section 4.3.2 of A Wavelet Tour of Signal Processing

An analytic wavelet is a complex valued wavelet ψ ∈ L1(R) ∩ L2(R) such that

ψ̂(ω) = 0, ω ≤ 0

We can measure the Heisenberg boxes of the wavelet time frequency atom ψu,s. Suppose
that ψ is centered at t = 0 so that its time variance is:

σ2
t =

∫
R
t2|ψ(t)|2 dt

Since ψ(t) is centered at zero, ψu,s(t) is centered at t = u and its time variance is computed
as:

σ2
t (u, s) =

∫
R
(t− u)2|ψu,s(t)|2 dt

=

∫
R
(t− u)2 1

s

∣∣∣∣ψ(t− us
)∣∣∣∣2 dt, v =

t− u
s

= s2

∫
R
v2|ψ(v)|2 dv

= s2σ2
t

Since ψ is analytic, the center frequency η of ψ is

η =
1

2π

∫ +∞

0

ω|ψ̂(ω)|2 dω

The Fourier transform of ψu,s is √
sψ̂(sω)e−iuω

and thus its center frequency is
ξu,s = η/s

The frequency variance of ψ is

σ2
ω =

1

2π

∫ +∞

0

(ω − η)2|ψ̂(ω)|2 dω

and using a similar change of variables as before, we obtain:

σ2
ω(u, s) =

σ2
ω

s2

Thus the time frequency Heisenberg box of ψu,s is centered at (u, η/s) and has length
sσt along the time axis, and length σω/s along the frequency axis. Figure 14 illustrates the

3



Figure 14: Heisenberg boxes of the analytic wavelet time frequency atoms.

idea. A wavelet transform is thus multiscale in time, as it tests the signal f against localized
oscillating waveforms at different scales s. It is additionally, though, multiresolution in
frequency, with better frequency localization in the low frequencies, and worse frequency
resolution in the high frequencies.

Analogous to the spectrogram for the windowed Fourier transform, an analytic wavelet
transform defines a local time frequency energy density PWf , which measures the energy of
f in the Heisenberg box ψu,s. This density is called the scalogram, and it is defined as:

PWf(u, s) = |Wf(u, s)|2

An analytic wavelet can be constructed in a similar fashion as the windowed Fourier
transform. Let g once gain be a real symmetric window, and set

ψ(t) = g(t)eiηt

Recall that Fourier transform of ψ is:

ψ̂(ω) = ĝ(ω − η)

Thus if
ĝ(ω) = 0, |ω| > η

then ψ is analytic; see Figure 15. Recall as well that since g is real and symmetric, ĝ(ω) is
real and symmetric as well and thus the center of frequency of ψ is η.
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Figure 15: Fourier transform ψ̂(ω) of a wavelet ψ(t) = g(t)eiηt.

A Gabor wavelet ψ(t) = gσ(t)eiηt is obtained with a Gaussian window

gσ(t) =
1√
2πσ

e−t
2/2σ2

where here gσ is normalized so that ‖ψ‖1 = 1. The Fourier transform of the Gaussian window
is

ĝσ(ω) = e−σ
2ω2/2

Thus if σ2η2 � 1, then ĝσ(ω) ≈ 0 for |ω| > η and the Gabor wavelet has nearly zero average
and is nearly analytic. It is thus not a wavelet in the strict sense of the term.

A Morlet wavelet modifies the Gabor wavelet to have precisely zero average; it is defined
as:

ψ(t) = g(t)
(
eiηt − Cσ,η

)
, Cσ,η = e−σ

2η2/2

A Morlet wavelet is thus a wavelet since
∫
ψ = 0. It is nearly analytic, but has a small

negative response in the negative frequencies. Both 2D Gabor and 2D Morlet wavelets are
often used in 2D computer vision and image processing tasks.

The next theorem shows that the analytic wavelet transform is invertible so long as the
wavelet ψ satisfies a weak admissibility condition given by (25). Recall that fa(t) is the
analytic part of a real valued signal f(t).

Theorem 4.6. Let f ∈ L2(R) be real valued and let ψ ∈ L1(R) ∩ L2(R) be an analytic
wavelet. Then

Wf(u, s) =
1

2
Wfa(u, s) (24)

Furthermore, if

Cψ =

∫ +∞

0

|ψ̂(ω)|2

ω
dω <∞ (25)

then

f(t) =
2

Cψ
<
[∫ +∞

0

∫
R
Wf(u, s)ψs(t− u) du

ds

s2

]
(26)
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and

‖f‖2
2 =

2

Cψ

∫ +∞

0

∫
R
|Wf(u, s)|2 du ds

s2
(27)

Proof. First note that the L1(R) norm of ψs is:

‖ψs‖1 =
√
s‖ψ‖1

which is obtained through a simple change of variables.
We now prove (24) first. Recall that ψs(t) = ψ∗(−t) and consider

fs(u) = Wf(u, s) = f ∗ ψs(u)

Young’s inequality (17) proves that fs ∈ L2(R):

‖fs‖2 = ‖f ∗ ψs‖2 ≤ ‖f‖2‖ψs‖1 =
√
s‖ψ‖1‖f‖2 <∞

The Fourier transform of fs is:

f̂s(ω) = f̂(ω)ψ̂s(ω) = f̂(ω)
√
sψ̂∗(sω)

Since ψ̂(ω) = 0 for ω ≤ 0, and f̂a(ω) = 2f̂(ω) for ω > 0, we derive that

f̂s(ω) =
1

2
f̂a(ω)

√
sψ̂∗(ω)

which is the Fourier transform of (1/2)fa ∗ ψs(u).
Now let us prove (27). We use the Plancheral formula and Tonelli:

2

Cψ

∫ +∞

0

∫
R
|Wf(u, s)|2 du ds

s2
=

1

2Cψ

∫ +∞

0

∫
R
|fa ∗ ψs(u)|2 du ds

s2

=
1

Cψ4π

∫ +∞

0

∫
R
|f̂a(ω)|2|ψ̂(sω)|2 dω ds

s

=
1

4π

∫ +∞

0

|f̂a(ω)|2 1

Cψ

∫ +∞

0

|ψ̂(sω)|2ds
s
dω (28)

Now make the change of variables ξ = sω, which induces the change of measure ds = (s/ξ)dξ.
We have:

(28) =
1

4π

∫ +∞

0

|f̂a(ω)|2 1

Cψ

∫ +∞

0

|ψ̂(ξ)|2

ξ
dξ dω

=
1

4π

∫ +∞

0

|f̂a(ω)|2 dω

=
1

2
‖fa‖2

2 = ‖f‖2
2
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Finally we prove (26). To do so we prove that

fa(t) =
1

Cψ

∫ +∞

0

∫
R
Wfa(u, s)ψs(t− u) du

ds

s2
(29)

The result will then follow since Wfa(u, s) = 2Wf(u, s) and <[fa(t)] = f(t).
To prove (29) we write the right hand side of (29) as:

h(t) =
1

Cψ

∫ +∞

0

∫
R
Wfa(u, s)ψs(t− u) du

ds

s2
=

1

Cψ

∫ +∞

0

fa ∗ ψs ∗ ψs(t)
ds

s2

We compute the Fourier transform of h(t), which gives:

ĥ(ω) =
1

Cψ

∫ +∞

0

f̂a(ω)ψ̂s(ω)ψ̂s(ω)
ds

s2

=
f̂a(ω)

Cψ

∫ +∞

0

√
sψ̂∗(sω)

√
sψ̂(sω)

ds

s2

=
f̂a(ω)

Cψ

∫ +∞

0

|ψ̂(sω)|2ds
s

But this is exactly the same integral we encountered in (28), where we proved that it equals
Cψ. Thus we obtain ĥ(ω) = f̂a(ω). But then we must have h(t) = fa(t) and the theorem is
proved.

The condition (25) is the admissibility condition of the wavelet ψ. Note that to be finite,
we must have ψ̂(0) = 0, or equivalently

∫
ψ = 0. This condition is nearly sufficient. If

ψ̂ ∈ C1(R) as well, then one can verify that the admissibility condition is satisfied. By
Theorem 2.15, if ψ is sufficiently localized in time such that

|ψ(t)| ≤ C

1 + |t|n+1+ε

then we must have ψ̂ ∈ C1(R).

Exercise 38. Read Section 4.3.2 of A Wavelet Tour of Signal Processing.
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4.4.2 Wavelet Ridges

Section 4.4.3 of A Wavelet Tour of Signal Processing.

Motivated by the hyperbolic chirp example and the poor performance of the windowed
Fourier ridges for this example, we define and study wavelet ridges. We utilize an approxi-
mately analytic “wavelet” ψ(t) of the form:

ψ(t) = g(t)eiηt

where the window function g(t) satisfies the same assumptions as in the windowed Fourier
case; namely:

• supp g = [−1/2, 1/2]

• g(t) ≥ 0 so that |ĝ(ω)| ≤ ĝ(0) for all ω ∈ R

• ‖g‖2 = 1 but also ĝ(0) =
∫
g(t) dt = ‖g‖1 ≈ 1

Let ∆ω be the bandwidth of ĝ. If η > ∆ω then

ψ̂(ω) = ĝ(ω − η)� 1, ∀ω ≤ 0

Thus ψ(t) is not strictly a wavelet nor is it strictly analytic, but it nearly satisfies both
conditions.

Notice that dilated and translated wavelets can be written as:

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
= gs,u,η/s(t)e

−i(η/s)u

where
gs,u,ξ(t) =

1√
s
g

(
t− u
s

)
eiξt

The resulting wavelet transform use time frequency atoms similar to those of the windowed
Fourier transform. However, in this case the scale s varies over (0,+∞) and ξ = η/s:

Wf(u, s) = 〈f, ψu,s〉 = 〈f, gu,s,η/s〉ei(η/s)u
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Theorem 4.5 computes 〈f, gu,s,ξ〉 when f(t) = a(t) cos θ(t). Applying this theorem to the
wavelet transform gives:

Wf(u, s) = 〈f, gu,s,η/s〉ei(η/s)u =

√
s

2
a(u)eiθ(u) [ĝ(s[η/s− θ′(u)]) + ε(u, η/s)]

A normalized scalogram computes

P̃Wf(u, η/s) =
|Wf(u, s)|2

s
=

1

4
a(u)2 |ĝ(s[η/s− θ′(u)]) + ε(u, η/s)|2

If the error term ε(u, η/s) is negligible, P̃Wf(u, η/s) obtains its maxima at (u, η/su) where

η

su
= θ′(u) =⇒ su =

η

θ′(u)

The corresponding points (u, η/su) are called wavelet ridges.
Recall the error term ε(u, η/s) is broken into four components:

|ε(u, η/s)| ≤ εa,1(u, η/s) + εa,2(u, η/s) + εθ,2(u, η/s) + sup
ω≥sθ′(u)

|ĝ(ω)|︸ ︷︷ ︸
(iv)

At the ridge points (u, η/su) the first error term εa,1 and the fourth error term can be made
negligible if the bandwidth ∆ω satisfies

∆ω ≤ suθ
′(u) =⇒ ∆ω ≤ η

but this was assumed from the start in order to make ψ an approximately analytic wavelet,
so these two error terms are guaranteed to be small by the choice of the wavelet. Using
Theorem 4.5, the second order terms at the ridge points are bounded as:

εa,2(u, η/su) ≤ sup
|t−u|≤su/2

s2
u|a′′(t)|
|a(u)|

= sup
|t−u|≤η/2θ′(u)

η2

θ′(u)2

|a′′(t)|
|a(u)|

and
εθ,2(u, η/su) ≤ sup

|t−u|≤su/2
s2
u|θ′′(t)| = sup

|t−u|≤η/2θ′(u)

η2

θ′(u)2
|θ′′(t)|

Thus since θ′(u) is in the denominator, we see that if the instantaneous frequency is small,
a′(u) and θ′(u) must have slow variations (i.e., a′′(u) and θ′′(u) need to be small), but a′(u)
and θ′(u) are allowed to vary much more quickly when the instantaneous frequency is large.

Now turn to our more general signal model:

f(t) =
K∑
k=1

ak(t) cos θk(t)

2



Recall that to separate the K instantaneous frequencies we require that

ĝ(sku[θ
′
k(u)− θ′l(u)])� 1, ∀ k 6= l,

η

sku
= θ′k(u)

which can be obtained if

∆ω ≤ sku|θ′k(u)− θ′l(u)| = η|θ′k(u)− θ′l(u)|
θ′k(u)

, k 6= l

Under the assumptions on the window g, the primary free parameter one has is the
frequency η. There is a tension between on the one hand wanting to make η large relative
to the bandwidth, so that the wavelet is nearly analytic, the error terms εa,1 and (iv) are
small, and so multiple instantaneous frequencies are separated; however, the second order
error terms εa,2 and εθ,2 may blow up if η is made too large.

Let us now return to the examples of the linear and hyperbolic chirps. We start with the
sum of two hyperbolic chirps, which the windowed Fourier transform had trouble analyzing:

f(t) = a1 cos

(
α1

β1 − t

)
+ a2 cos

(
α2

β2 − t

)
In this case θk(t) = αk/(βk − t) and θ′k(t) = αk/(βk − t)2. Since the amplitudes a1 and a2

are constant, the second order term εa,2(u, su) = 0. The other second order error term is
bounded as:

εθ,2(u, su) ≤ max
k=1,2

sup
|t−u|≤η/2θ′k(u)

η2 |θ′′k(t)|
θ′(u)2

≤ max
k=1,2

sup
|t−u|≤η(βk−u)2/2αk

η2 2αk
(βk − t)3

(βk − t)4

α2
k

≤ max
k=1,2

sup
|t−u|≤η(βk−u)2/2αk

η2 2(βk − t)
αk

This error term will be small if
η2 � αk

βk − t
This will be the case if, for example, t ∈ [0, βk) and η �

√
αk/βk. Figure 16 illustrates how

the wavelet ridges successfully follow the instantaneous frequencies of the two hyperbolic
chirps.

Now let us go back to the two linear chirps signal

f(t) = a1 cos(bt2 + ct) + a2 cos(bt2)

which has frequencies θ1(t) = bt2 + ct and θ2(t) = bt2. We thus have

|θ′1(u)− θ′2(u)|
θ′1(u)

=
|c|
2bt
→ 0 as t→ +∞

3



Figure 16: Analysis of a signal consisting of two hyperbolic chirps. (a) Normalized scalogram
P̃Wf(u, η/s); (b) Wavelet ridges.
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Figure 17: Analysis of a signal consisting of two linear chirps. (a) Normalized scalogram
P̃Wf(u, η/s); (b) Wavelet ridges.
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Thus for some finite t we will not be able to separate the instantaneous frequencies because
of interferences. Figure 17 illustrates this phenomenon, as for large t the ridges follow the
interference patterns rather than the instantaneous frequencies.

The take home message is that better is more sparse. This is true of course for com-
pression, where sparser representations require less memory to store. But the linear and
hyperbolic chirp examples show that sparsity also means we have found a time frequency
transform that has a resolution adapted to the time frequency properties of the signal, in
which case the number of ridge points is small. Conversely, if signal structures do not match
our dictionary of time frequency atoms, then their energy will diffuse over many such atoms
which produces more ridge points.

Exercise 39. Read Section 4.4.3 of A Wavelet Tour of Signal Processing.

Exercise 40. Adapt your windowed Fourier ridge code from Exercise 35 to compute the
normalized scalogram P̃Wf(u, η/s) and corresponding wavelet ridges. Test your code on the
sum of two linear chirps and the sum of two hyperbolic chirps. Turn in plots of your wavelet
ridges. Do you get something similar to the plots in Figures 16 and 17?
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4.4.3 Real Wavelets

Section 4.3.1 of A Wavelet Tour of Signal Processing.

We now shift our focus to real wavelets. As we shall see, real valued wavelets are good for
measuring sharp signal transitions, and in particular measuring the the regularity of f(t) at
a specific point t = u. Indeed, since

∫
ψ = 0, the wavelet transform Wf(u, s) = 〈f, ψu,s〉

measures the variation of f in a neighborhood of u proportional s. “Zooming in” on these
variations will allow us to measure the regularity of f at u.

For now we show that like the analytic wavelet transform, the real wavelet transform is
invertible and preserves the energy of f . We collect these results in the next theorem.

Theorem 4.7. Let ψ ∈ L1(R) ∩ L2(R) be a real function such that

Cψ =

∫ +∞

0

|ψ̂(ω)|2

ω
dω < +∞

Then, for any f ∈ L2(R),

f(t) =
1

Cψ

∫ +∞

0

∫
R
Wf(u, s)

1√
s
ψ

(
t− u
s

)
du

ds

s2

and

‖f‖2
2 =

1

Cψ

∫ +∞

0

∫
R
|Wf(u, s)|2 du ds

s2

The proof is nearly identical to the proof of Theorem 4.6, and so is omitted. An example
of a real valued wavelet, which we shall use later and which also satisfies the conditions of
Theorem 4.7, is the so called “Mexican hat wavelet.” The Mexican hat wavelet is the second
derivative of a suitably normalized Gaussian function gσ(t) with mean zero and standard
deviation σ:

ψ(t) = g′′σ(t) =
2

π1/4
√

3σ

(
t2

σ2
− 1

)
e−t

2/2σ2

(30)

The Fourier transform of ψ(t) is

ψ̂(ω) = −ω2ĝσ(ω) = −
√

8σ5/2π1/4

√
3

ω2e−σ
2ω2/2

1



Figure 18: Mexican hat wavelet for σ = 1 and its Fourier transform.

Figure 18 plots the Mexican hat wavelet and its Fourier transform.
Figure 19 computes the wavelet transform of the signal from Figure 13 using the Mexican

hat wavelet. The maximum scale is smaller than one because the support of f(t) is limited
to t ∈ [0, 1]. In all numerical calculations, including this one, the minimum scale is limited
by the sampling interval of the discretized signal due to aliasing effects. When the scale
decreases, the wavelet transform Wf(u, s) has a rapid decay to zero in the regions where the
signal is regular. Isolated singularities create cones of large amplitude wavelet coefficients
that converge to the locations of the isolated singularities, as on the left hand side of the
signal. The right hand side of the signal is singular almost everywhere. If this part can be
modeled as a random process or multifractal, then under certain assumptions the distribution
of singularities can be estimated fromWf(u, s), which can characterize the underlying signal
generation process.

In numerical applications, both the minimum and maximum scale are limited. We now
examine the wavelet transform when we compute Wf(u, s) only for s < s0. In this case
we lose the low frequency components of f(t), since the supports of ψs(ω) =

√
sψ̂∗(sω) as

s→ +∞ collapse in around ω = 0; see Figure 20 for an illustration.
In order to recover this lost low frequency information, we introduce a single scaling

function φ that is an aggregation of all wavelets at scales larger than one. The modulus of
its Fourier transform is defined as:

|φ̂(ω)|2 =

∫ +∞

1

|ψ̂(sω)|2 ds
s

=

∫ +∞

ω

|ψ̂(ξ)|2

ξ
dξ (31)

The complex phase of φ̂(ω) can be arbitrarily chosen; in particular we can set it to zero
so that φ is real valued. One can verify that ‖φ‖2 = 1. The definition of φ̂(ω) and the
admissibility condition yields:

|φ̂(ω)|2 ≤ |φ̂(0)|2 = lim
ξ→0
|φ̂(ξ)|2 = Cψ, ∀ω ∈ R

2



Figure 19: Real wavelet transform Wf(u, s) computed with a Mexcian hat wavelet. The
vertical axis represents log2 s, Black, gray and white points correspond, respectively, to
positive, zero, and negative wavelet coefficients.

Figure 20: Scaled Fourier transform |ψ̂(2jω)|2 for 1 ≤ j ≤ 5 and ω ∈ [−π, π]. Notice the gap
around ω = 0 due to the limitation of the largest scale s = 25.

3



Denote by φs(t) the scaling of φ(t) by s:

φs(t) =
1√
s
φ

(
t

s

)
, φs(t) = φ∗s(−t)

The low frequency approximation of f at scale s is

Lf(u, s) = f ∗ φs(u)

In this case, the wavelet inversion formula becomes:

f(t) =
1

Cψ

∫ s0

0

Wf(·, s) ∗ ψs(t)
ds

s2
+

1

Cψs0

Lf(·, s0) ∗ φs0(t) (32)

For the Mexican hat wavelet defined in (30), the Fourier transform of the scaling function
is:

φ̂(ω) =
2σ5/2π1/4

√
3

√
ω2 +

1

σ2
e−σ

2ω2/2

See Figure 21 for a plot.

Figure 21: Scaling function associated to a Mexican hat wavelet and its Fourier transform.

Exercise 41. Read Section 4.5 of A Wavelet Tour of Signal Processing.

Exercise 42. Let φ be the scaling function defined by (31). Prove that ‖φ‖2 = 1.

Exercise 43. Prove the reconstruction formula given in (32), which can be rewritten as:

f(t) =
1

Cψ

∫ s0

0

f ∗ ψs ∗ ψs(t)
ds

s2
+

1

Cψs0

f ∗ φs0 ∗ φs0(t)

Exercise 44. [20 points] Implement the real wavelet transform Wf(u, s) using the Mexican
hat wavelet. Write down a signal f(t) similar to the one from Figure 13 (does not have to
be exactly the same!) and compute Wf(u, s) numerically. Turn in a plot of your signal and
a plot of Wf(u, s), as in Figure 19.
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5 Wavelet Zoom
Chapter 6 of A Wavelet Tour of Signal Processing [1].

Wavelet transforms can zoom in and characterize the regularity of a function f(t) at indi-
vidual points t = v. We show how in this section.

5.1 Lipschitz Regularity

Section 6.1 of A Wavelet Tour of Signal Processing

5.1.1 Lipschitz Definition and Fourier Analysis

Section 6.1.1 of A Wavelet Tour of Signal Processing

We begin by defining the spaces Ċα(R) and Cα(R) for any α > 0, α /∈ Z. Let 0 < α < 1.
Define the modulus of continuity of f(t), ωf (h), as:

ωf (h) = sup{|f(t)− f(u)| : |t− u| ≤ h} .

The space Ċα(R), for 0 < α < 1, consists of those functions for which

∀h > 0 , ωf (h) ≤ Kfh
α

Another way of writing this condition is:

∀ (t, u) ∈ R2 , |f(t)− f(u)| ≤ Kf |t− u|α

We thus see that Ċα(R) consists of those functions that satisfy a type of global Lipschitz
condition; they are called α-Hölder functions. The space Cα(R) contains all those functions
in Ċα(R) that are also bounded, i.e.,

Cα(R) = Ċα(R) ∩ L∞(R)

These definitions are extended to arbitrary α > 0, α /∈ Z, in the following way. Let
n < α < n+ 1 for some n ∈ N. Then

f ∈ Ċα(R) ⇐⇒ f ∈ Cn(R) and f (n) ∈ Ċα−n(R)

where Ċα−n(R) is defined as above since 0 < α− n < 1. Similarly,

f ∈ Cα(R) ⇐⇒ f ∈ Cn(R) and f (k) ∈ Cα−n(R) ∀ k ≤ n

We can link these definitions to Taylor’s theorem. Suppose that f ∈ Ċα(R) for n < α <
n+ 1. Let v ∈ R and let Jvf(t) be the jet of f at v, which is the n-degree Taylor polynomial
of f around v:

Jvf(t) =
n∑
k=0

f (k)(v)

k!
(t− v)k

5



Denote the residual by Rvf(t), i.e.,

Rvf(t) = f(t)− Jvf(t)

Then using Taylor’s theorem and the fact that f ∈ Ċα(R),

|Rvf(t)| ≤ K|t− v|α

Conversely, suppose that f(t) is a continuous function for which there exists a universal
constant K and such that for each v ∈ R, there exists a polynomial pv(t) of degree at most
n such that

|f(t)− pv(t)| ≤ K|t− v|α

Then f ∈ Ċα(R).
We can use this link with Taylor’s theorem to define notions of local regularity rather

than global regularity. In particular, a function f(t) is pointwise Lipschitz α at v ∈ R, for
n < α ≤ n+ 1, if there exists Kv > 0 and a polynomial pv(t) of degree n such that

∀ t ∈ R , |f(t)− pv(t)| ≤ Kv|t− v|α (33)

Furthermore, a function f is uniformly Lipschitz α over an interval [a, b] if it satisfies (33)
for all v ∈ [a, b] with a constant K that is independent of v.

Remark 5.1. At each v ∈ R the polynomial pv(t) is unique. Additionally, if f is n times
continuously differentiable in a neighborhood of v, then pv(t) = Jvf(t).

Remark 5.2. A function that is bounded but discontinuous at v is said to Lipschitz α = 0 at
v. If α < 1 at v, then f is not differentiable at v and α characterizes the type of singularity.
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The next theorem generalizes Theorem 2.15 by relating the decay of the Fourier transform
of f(t) to the α regularity of f .

Theorem 5.3. Suppose that f ∈ L1(R). If∫
R
|f̂(ω)|(1 + |ω|α) dω < +∞ (34)

then f ∈ Cα(R).

Proof. Equation (34) implies that f̂ ∈ L1(R), and so the Fourier inversion formula (2) holds.
We use it to prove f ∈ L∞(R):

|f(t)| ≤ 1

2π

∣∣∣∣∫
R
f̂(ω)eiωt dω

∣∣∣∣ ≤ 1

2π

∫
R
|f̂(ω)| dω

≤ 1

2π

∫
R
|f̂(ω)|(1 + |ω|α) dω <∞

Now suppose that 0 < α < 1 and show that f ∈ Ċα(R). To do so we need to show there
exists K > 0 such that

|f(t)− f(v)| ≤ K|t− v|α, ∀ t, v ∈ R

By the Fourier inversion formula (2) we have that

f(t) =
1

2π

∫
R
f̂(ω)eiωt dω

It follows that
|f(t)− f(v)|
|t− v|α

≤ 1

2π

∫
R
|f̂(ω)| |e

iωt − eiωv|
|t− v|α

dω

For |ω| ≥ |t− v|−1,
|eiωt − eiωv|
|t− v|α

≤ 2

|t− v|α
≤ 2|ω|α (35)

On the other hand, for |ω| ≤ |t− v|−1, we note that if a function h ∈ C1(R) with bounded
derivative then

|h(t)− h(v)| ≤ K|t− v|, K = sup
u∈R
|h′(u)|

1



Note that eω ∈ C1(R), where eω(t) = eiωt, and |e′ω(t)| = |ω|. Therefore,

|eiωt − eiωv|
|t− v|α

≤ |ω||t− v|
|t− v|α

= |ω||t− v|1−α ≤ |ω||ω|α−1 = |ω|α (36)

Combining (35) and (36), we obtain

|f(t)− f(v)|
|t− v|α

≤ 1

2π

∫
R

2|f̂(ω)||ω|α dω = K

Equation (34) ensures that K <∞, and so f ∈ Cα(R).
We now extend the result to α > 1, α /∈ Z. Let n = bαc. Theorem 2.15 proves that

f ∈ Cn(R). Recall that f̂ (k)(ω) = (iω)kf̂(ω). Equation (34) gives:∫
R
|f̂ (k)(ω)|(1 + |ω|α−n) dω =

∫
R
|f̂(ω)|(|ω|k + |ω|α−n+k) dω <∞

Thus by our work above, we have that f (k) ∈ Cα−n(R) for k ≤ n, which proves that
f ∈ Cα(R).

As we have discussed previously for Cn-smooth functions, the decay of the Fourier trans-
form can only indicate the minimum regularity of f(t). Wavelet transforms characterize
both the global and pointwise regularity of functions.

Exercise 45. Read Section 6.1.1 of A Wavelet Tour of Signal Processing.

Exercise 46. Consider the function

f(t) = t sin

(
1

t

)
(a) Prove that f(t) is pointwise Lipschitz 1 for all t ∈ (−1, 1).

(b) Prove that f ∈ Cα(−1, 1) only for α ≤ 1/2 (Hint: Consider the points tn = (n +
1/2)−1π−1).

5.1.2 Wavelet Vanishing Moments

Section 6.1.2 of A Wavelet Tour of Signal Processing.

We assume throughout that ψ(t) is a real valued wavelet. A wavelet ψ has n vanishing
moments if ∫

R
tkψ(t) dt = 0, ∀ 0 ≤ k < n

A wavelet ψ with n vanishing moments is orthogonal to polynomials of degree n− 1.
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Suppose now that f is Lipschitz α ≤ n at v, so that

f(t) = pv(t) + εv(t)

with pv(t) a polynomial of degree n− 1 and

|εv(t)| ≤ K|t− v|α

We have that

Wpv(u, s) =

∫
R
pv(t)

1√
s
ψ

(
t− u
s

)
dt =

√
s

∫
R
pv(st

′ + u)ψ(t′) dt′ = 0

Therefore,
Wf(u, s) = Wpv(u, s) +Wεv(u, s) = Wεv(u, s)

Thus a wavelet transform with n vanishing moments analyzes f(t) around t = v by ignoring
the polynomial approximation of f(t) and focusing on the residual εv(t).

A wavelet ψ has fast decay if

∀m ∈ N, ∃Cm such that |ψ(t)| ≤ Cm
1 + |t|m

, ∀ t ∈ R

The following theorem shows that a wavelet ψ with fast decay and n vanishing moments is
the nth derivative of a function θ(t). The resulting wavelet transform is thus a multiscale
differential operator.

Theorem 5.4. A wavelet ψ(t) with fast decay has n vanishing moments if and only if there
exists θ(t) with a fast decay such that

ψ(t) = (−1)nθ(n)(t)

Consequently,

Wf(u, s) = sn
dn

dun
(f ∗ θs)(u)

where θs(t) = s−1/2θ(−t/s). Furthermore, ψ has no more than n vanishing moments if and
only if ∫

R
θ(t) dt 6= 0

Proof. Suppose that ψ has fast decay and n vanishing moments. Since ψ has fast decay we
must have that ψ̂ ∈ C∞(R); this follows from Theorem 2.15 by setting f = ψ̂. Thus we can
differentiate ψ̂(ω) as many times as we like.

Recall that the Fourier transform of h(t) = (−it)kψ(t) is ĥ(ω) = ψ̂(k)(ω). It follows that

ψ̂(k)(0) =

∫
R
(−it)kψ(t) dt = (−i)k

∫
R
tkψ(t) dt = 0, ∀ 0 ≤ k < n

3



We can therefore write ψ̂ as
ψ̂(ω) = (−iω)nθ̂(ω)

where θ̂ ∈ L∞(R) since ψ̂ ∈ L∞(R). It follows that

ψ(t) = (−1)nθ(n)(t)

The fast decay of θ(t) is proved with an induction on n. For n = 1,

ψ̂(ω) = −iωθ̂(ω) =⇒ ψ(t) = −θ′(t)

It follows that

θ(t) = −
∫ t

−∞
ψ(u) du

Thus, using the fast decay of ψ(t),

|θ(t)| ≤
∫ t

−∞
|ψ(u)| du ≤

∫ t

−∞

Cm
1 + |u|m

du ≤
C ′m−1

1 + |t|m−1
, ∀m ≥ 2

Now make the inductive hypothesis that if Ψ(t) is any wavelet with fast decay and

Ψ̂(ω) = (−iω)kΘ̂(ω), 1 ≤ k ≤ n

then Θ(t) has fast decay. Consider now a wavelet ψ with fast decay that has n+ 1 vanishing
moments, so that ψ̂(ω) = (−iω)n+1θ̂(ω). Define

Θ̂(ω) = −iωθ̂(ω) =⇒ ψ̂(ω) = (−iω)nΘ̂(ω)

By the inductive hypothesis, Θ(t) has fast decay. But then since Θ̂(ω) = −iωθ̂(ω), we can
apply the inductive hypothesis again to conclude that θ(t) has fast decay.

Conversely, suppose that ψ(t) = (−1)nθ(n)(t) and θ(t) has fast decay. Because of the fast
decay,

|θ̂(ω)| ≤
∫
R
|θ(t)| dt ≤

∫
R

Cm
1 + |t|m

dt < +∞, m ≥ 2

Thus θ̂ ∈ L∞(R). The Fourier transform of ψ(t) is

ψ̂(ω) = (−iω)nθ̂(ω)

It follows that ψ̂(k)(0) = 0 for k < n. But then∫
R
tkψ(t) dt = ikψ̂(k)(0) = 0, 0 ≤ k < n

Thus ψ(t) has n vanishing moments.
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To test whether ψ(t) has more than n vanishing moments, we compute:∫
R
tnψ(t) dt = inψ̂(n)(0) = (−i)nn!θ̂(0)

Clearly then ψ has no more than n vanishing moments if and only if

θ̂(0) =

∫
R
θ(t) dt 6= 0

Recall the wavelet transform can be written as

Wf(u, s) = f ∗ ψs(u)

where
ψs(t) =

1√
s
ψ

(
−t
s

)
=

(−1)n√
s
θ(n)

(
− t
s

)
= (−1)nθ

(n)

s (t)

A simple calculation also shows that

dn

dtn
θs(t) =

1

sn
(−1)n√

s
θ(n)

(
− t
s

)
=

(−1)n

sn
θ

(n)

s (t) =
ψs(t)

sn

Therefore ψs(t) = sn(dn/dtn)θs(t). We then have:

Wf(u, s) = f ∗ ψs(u) = snf ∗ θ(n)
s (u) = sn

dn

dun
(f ∗ θ)(u)

If K = θ̂(0) 6= 0, then the convolution f ∗θs(t) can be interpreted as a weighted average of
f with a kernel dilated by s. Theorem 5.4 proves that Wf(u, s) is an nth order derivative of
an averaging of f over a domain proportional to s and centered at u. Figure plots Wf(u, s)
calculated with ψ(t) = −θ′(t), where θ(t) is a Gaussian. Notice how the sign and magnitude
of the wavelet coefficients corresponds to the derivative of f averaged over a window of size
proportional to s. Compare to Figure 19, which computed Wf(u, s) with the Mexican hat
wavelet ψ(t) = θ′′(t) (θ again a Gaussian).

Since θ(t) has fast decay, once can verify that for any f that is continuous at u,

lim
s→0

f ∗ 1√
s
θs(u) = Kf(u)

In the sense of distributions, we write

lim
s→0

1√
s
θs(t) = Kδ(t)

5



Figure 22: Wavelet transform Wf(u, s) calculated with ψ = −θ′, where θ is a Gaussian, for
the signal f(t) shown in (a). Position parameter u and scale s vary, respectively, along the
horizontal and vertical axes. (b) Black, gray, and white points correspond to positive, zero,
and negative wavelet coefficients. Singularities create large-amplitude coefficients in their
cone of influence.
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If f is n times continuously differentiable in the neighborhood of u, then using Theorem 5.4,

lim
s→0

Wf(u, s)

sn+1/2
= lim

s→0

1√
s

dn

dtn
(f ∗ θs)(u) = lim

s→0
f (n) ∗ 1√

s
θs(u) = Kf (n)(u) (37)

In particular, if f ∈ Cn(R), then |Wf(u, s)| = O(sn+1/2). This gives us a first relation
between the decay of |Wf(u, s)| as s → 0 and the uniform regularity of f . Next we push
harder and obtain finer relations.

Exercise 47. Read Section 6.1.2 of A Wavelet Tour of Signal Processing.
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5.1.3 Regularity Measurements with Wavelets

Section 6.1.3 of A Wavelet Tour of Signal Processing.

We now prove that “zooming in” on the wavelet coefficients of a signal f characterizes the
pointwise regularity of f . We utilize a real valued wavelet ψ ∈ Cn(R) with n vanishing
moments and with derivatives that have fast decay. The latter point means that for any
0 ≤ k ≤ n and m ∈ N there exists Cm ≥ 0 such that

|ψ(k)(t)| ≤ Cm
1 + |t|m

, ∀ t ∈ R

Let n − 1 < α ≤ n for some n ∈ N. Recall that f(t) is Lipschitz α > 0 at v ∈ R if there
exists a degree n− 1 polynomial pv(t) and a constant Kv ≥ 0 such that

∀ t ∈ R , |f(t)− pv(t)| ≤ Kv|t− v|α

Additionally, f is uniformly Lipschitz α on an interval [a, b] if it satisfies the above condition
for all v ∈ [a, b] with a constant K that is independent of v.

Theorem 5.5. If f ∈ L2(R) is Lipschitz α ≤ n at v ∈ R, then there exits A > 0 such that

|Wf(u, s)| ≤ Asα+1/2

(
1 +

∣∣∣∣u− vs
∣∣∣∣α) , ∀ (u, s) ∈ R× (0,∞) (38)

Conversely if α < n is not an integer and there exist A and α′ < α such that

∀ (u, s) ∈ R× (0,∞) , |Wf(u, s)| ≤ Asα+1/2

(
1 +

∣∣∣∣u− vs
∣∣∣∣α′
)

(39)

then f(t) is Lipschitz α at t = v.

Proof. We first prove (38). Since f is Lipschitz α at v, there exists a polynomial pv(t) of
degree n− 1 and K such that

|f(t)− pv(t)| ≤ K|t− v|α

1



Recall that since ψ has n vanishing moments, Wpv(u, s) = 0. Therefore:

|Wf(u, s)| =
∣∣∣∣∫

R
[f(t)− pv(t)]

1√
s
ψ

(
t− u
s

)
dt

∣∣∣∣
≤
∫
R
K|t− v|α 1√

s

∣∣∣∣ψ(t− us
)∣∣∣∣ dt

Now make the change of variables x = (t − u)/s, which induces the change of measure
dt = sdx,

|Wf(u, s)| ≤ K
√
s

∫
R
|sx+ u− v|α|ψ(x)| dx

≤ K
√
s

∫
R

2α(|sx|α + |u− v|α)|ψ(x)| dx

= K2αsα+1/2

(∫
R
|x|α|ψ(x)| dx+

∣∣∣∣u− vs
∣∣∣∣α ∫

R
|ψ(x)| dx

)
≤ Asα+1/2

(
1 +

∣∣∣∣u− vs
∣∣∣∣α)

where
A = K2α max

(∫
R
|x|α|ψ(x)| dx, ‖ψ‖1

)
and where we used the fact that |a+ b|α ≤ 2α(|a|α + |b|α).

Now we prove (39). This is a difficult proof that adapts the Littlewood-Paley approach
referenced earlier in the course. Recall the real wavelet inverse formula from Theorem 4.7,

f(t) =
1

Cψ

∫
R

∫ +∞

0

Wf(u, s)
1√
s
ψ

(
t− u
s

)
ds

s2
du

We are going to break up the scale integral into dyadic intervals. Define:

∆j(t) =
1

Cψ

∫
R

∫ 2j+1

2j
Wf(u, s)

1√
s
ψ

(
t− u
s

)
ds

s2
du, j ∈ Z

Note that we have the following Littlewood-Paley type sum:

f(t) =
∑
j∈Z

∆j(t) (40)

Let ∆
(k)
j (t) be the kth order derivative of ∆j(t). To prove that f is Lipschitz α at v we

need a polynomial pv(t) of degree bαc and a constant K such that |f(t)− pv(t)| ≤ K|t− v|α.
We propose

pv(t) =

bαc∑
k=0

(∑
j∈Z

∆
(k)
j (v)

)
(t− v)k

k!
(41)
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as a candidate. The remainder of the proof is in showing that (41) does the job. Notice that
if f is n− 1 times differentiable at v, then using (40) we have

∑
j ∆

(k)
j (v) = f (k)(v), and we

get the jet Jvf(t) = pv(t). However, we can compute ∆
(k)
j (t) for each j ∈ Z even when f is

not n times differentiable at v. But then we need to show that pv(t) is well defined even when
f is not n times differentiable at v, and in particular we need to show that

∑
j∈Z ∆

(k)
j (v) is

finite. Once we do that, we can think of (41) as a generalization of jets, and in particular
the sums

∑
j ∆

(k)
j (v) as generalizations of pointwise derivatives at v.

We first prove that
∑

j ∆
(k)
j (v) is finite by getting appropriate upper bounds on |∆(k)

j (t)|
for k ≤ bαc + 1 ≤ n. To simplify notation, we let K be a generic constant that may
change from line to line, but does not depend on j and t. Equation (39) plus the
fast decay of the wavelet derivatives yield:

|∆(k)
j (t)| = 1

Cψ

∣∣∣∣∣
∫
R

∫ 2j+1

2j
Wf(u, s)

1√
s

dk

dtk
ψ

(
t− u
s

)
ds

s2
du

∣∣∣∣∣
≤ 1

Cψ

∫
R

∫ 2j+1

2j
|Wf(u, s)| 1√

s

1

sk

∣∣∣∣ψ(k)

(
t− u
s

)∣∣∣∣ dss2
du

≤ K

∫
R

∫ 2j+1

2j
sα−k

(
1 +

∣∣∣∣u− vs
∣∣∣∣α′
)

Cm
1 + |(t− u)/s|m

ds

s2
du (42)

Now observe that on the interval [2j, 2j+1], we have

sup
s∈[2j ,2j+1]

sα−k = 2α−k2j(α−k) = K2j(α−k)

It follows that

(42) ≤ K

∫
R

2j(α−k)

(
1 +

∣∣∣∣u− v2j

∣∣∣∣α′
)

1

1 + |(t− u)/2j|m

(∫ 2j+1

2j

ds

s2

)
du

≤ K

∫
R

2j(α−k)

(
1 +

∣∣∣∣u− v2j

∣∣∣∣α′
)

1

1 + |(t− u)/2j|m
du

2j
(43)

Now make the change of variables u′ = 2−j(u−t) and once again use the inequality |a+b|α′ ≤
2α
′
(|a|α′ + |b|α′) to arrive at:

(43) = K2j(α−k)

∫
R

(
1 +

∣∣∣∣u′ + t− v
2j

∣∣∣∣α′
)

1

1 + |u′|m
du′

≤ K2j(α−k)

∫
R

1 + 2α
′|u|α′ + 2α

′|(t− v)/2j|α′

1 + |u′|m
du′

≤ K2j(α−k)

[∫
R

1 + |u′|α′

1 + |u′|m
du′ +

∣∣∣∣t− v2j

∣∣∣∣α′ ∫
R

1

1 + |u′|m
du′

]

3



Choosing m = α′ + 2 yields:

|∆(k)
j (t)| ≤ K2j(α−k)

(
1 +

∣∣∣∣t− v2j

∣∣∣∣α′
)
, ∀ k ≤ bαc+ 1 (44)

At t = v, we obtain
|∆(k)

j (v)| ≤ K2j(α−k)

which guarantees a fast decay of |∆(k)
j (v)| as j → −∞ for k ≤ bαc (i.e., in the small scale

regime), because α is not an integer and so α > bαc.
At large scales, since

|Wf(u, s)| = |f ∗ ψs(u)| ≤ ‖f‖2‖ψ‖2

with the change variables u′ = (t− u)/s we have

|∆(k)
j (t)| ≤ 1

Cψ

∫
R

∫ 2j+1

2j
|Wf(u, s)| 1√

s

∣∣∣∣ dkdtkψ
(
t− u
s

)∣∣∣∣ dss2
du

≤ ‖f‖2‖ψ‖2

Cψ

∫
R

∫ 2j+1

2j
|ψ(k)(u′)| ds

s3/2+k
du′

≤ K‖f‖2‖ψ‖2‖ψ(k)‖1

Cψ
2−j(k+1/2)

and therefore
|∆(k)

j (v)| ≤ K2−j(k+1/2)

Thus we can bound
∑

j ∆
(k)
j (v) since

∀ k ≤ bαc,

∣∣∣∣∣∑
j∈Z

∆
(k)
j (v)

∣∣∣∣∣ ≤∑
j∈Z

|∆(k)
j (v)|

=
0∑

j=−∞

|∆(k)
j (v)|+

+∞∑
j=1

|∆(k)
j (v)|

≤ K
0∑

j=−∞

2j(α−k) +K
+∞∑
j=1

2−j(k+1/2)

< +∞

With the Littlewood-Paley sum (40) we compute:

|f(t)− pv(t)| =

∣∣∣∣∣∣
∑
j∈Z

∆j(t)−
bαc∑
k=0

∆
(k)
j (v)

(t− v)k

k!

∣∣∣∣∣∣
≤
∑
j∈Z

∣∣∣∣∣∣∆j(t)−
bαc∑
k=0

∆
(k)
j (v)

(t− v)k

k!

∣∣∣∣∣∣ (45)
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The sum over the scales j ∈ Z is divided in two at J such that

2J−1 ≤ |t− v| ≤ 2J

We define:

IJ =
∑
j≥J

∣∣∣∣∣∣∆j(t)−
bαc∑
k=0

∆
(k)
j (v)

(t− v)k

k!

∣∣∣∣∣∣
IIJ =

∑
j<J

∣∣∣∣∣∣∆j(t)−
bαc∑
k=0

∆
(k)
j (v)

(t− v)k

k!

∣∣∣∣∣∣
Note this means our constant K cannot depend on J , since J depends on t. The summands
of (45) are bαc Taylor approximations of ∆j(t) around v. For the large scales corresponding
to j ≥ J , we can use the classical Taylor’s theorem to get a bound:

IJ =
∑
j≥J

∣∣∣∣∣∣∆j(t)−
bαc∑
k=0

∆
(k)
j (v)

(t− v)k

k!

∣∣∣∣∣∣
≤
∑
j≥J

|t− v|bαc+1

(bαc+ 1)!
sup
h∈[t,v]

|∆bαc+1
j (h)|

≤ K|t− v|bαc+1
∑
j≥J

sup
h∈[t,v]

|∆bαc+1
j (h)|

Inserting the bound (44) yields:

IJ ≤ K|t− v|bαc+1
∑
j≥J

2−j(bαc+1−α)

(
1 +

∣∣∣∣t− v2j

∣∣∣∣α′
)

Since |t− v| ≤ 2J we have |(t− v)/2j| ≤ 1 for j ≥ J . Therefore we have arrived at:

IJ ≤ K|t− v|bαc+1
∑
j≥J

2−j(bαc+1−α)

We need to bound the series. We will do so with the following proposition.

Proposition 5.6. For any 0 ≤ r < 1 and for any J ∈ Z,∑
j≥J

rj =
rJ

1− r

Proof of the Proposition 5.6. The proof will rely on the well known fact:

∀R 6= 1 ,
K−1∑
j=0

Rj =
1−RK

1−R

5



which gives the result for J = 0 by taking R = r and K = +∞. For J > 0 we have

∑
j≥J

rj =
∑
j≥0

rj −
J−1∑
j=0

rj =
1

1− r
− 1− rJ

1− r
=

rJ

1− r

For J < 0 we have:

∑
j≥J

rj =
∑
j≥0

rj +
−1∑
j=J

rj =
1

1− r
+
−J∑
j=1

r−j =
1

1− r
+
−J∑
j=1

(r−1)j

=
1

1− r
− 1 +

−J∑
j=0

(r−1)j =
r

1− r
+

1− (r−1)−J+1

1− r−1

=
r

1− r
+

1− rJ−1

1− r−1
=

r

1− r
+
r − rJ

r − 1
=

rJ

1− r

Now apply Proposition 5.6 with rα = 2−(bαc+1−α), which is less than one since bαc+1 > α.
We obtain:

IJ ≤ K|t− v|bαc+1
∑
j≥J

2−j(bαc+1−α) = K|t− v|bαc+1
∑
j≥J

rjα = K|t− v|bαc+1 rJα
1− rα

Now 1/(1− rα) only depends on α and can be absorbed into K. Furthermore, since 2−J ≤
|t− v|−1 we also have:

rJα = 2−J(bαc+1−α) ≤ |t− v|−(bαc+1−α)

Thus we obtain:

IJ ≤ K|t− v|bαc+1rJα ≤ K|t− v|bαc+1|t− v|−(bαc+1−α) = K|t− v|α

6



Now consider the sum over j < J and use (44),

IIJ =
∑
j<J

∣∣∣∣∣∣∆j(t)−
bαc∑
k=0

∆
(k)
j (v)

(t− v)k

k!

∣∣∣∣∣∣
≤ K

∑
j<J

|∆j(t)|+
bαc∑
k=0

|∆j(v)| |t− v|
k

k!


≤ K

∑
j<J

2jα

(
1 +

∣∣∣∣t− v2j

∣∣∣∣α′
)

+

bαc∑
k=0

|t− v|k

k!
2j(α−k)


= K

∑
j<J

2jα + 2j(α−α
′)|t− v|α′ +

bαc∑
k=0

|t− v|k

k!
2j(α−k)


= K

∑
j<J

2jα + |t− v|α′
∑
j<J

2j(α−α
′) +

bαc∑
k=0

|t− v|k

k!

∑
j<J

2j(α−k)


≤ K

∑
j≥−J

(2−α)j + |t− v|α′
∑
j≥−J

(2α
′−α)j +

bαc∑
k=0

|t− v|k

k!

∑
j≥−J

(2k−α)j

 (46)

Apply Proposition 5.6 to each of the series in j with rα = 2−α < 1, rα = 2α
′−α < 1, and

rα = 2k−α < 1, respectively, to obtain:

(46) ≤ K

2Jα + 2J(α−α′)|t− v|α′ +
bαc∑
k=0

2J(α−k) |t− v|k

k!

 (47)

Now, since 2J−1 ≤ |t− v| ≤ 2J we have

2J = 2 · 2J−1 ≤ 2|t− v|
Plugging this inequality into (47), we have:

(47) ≤ K

2α|t− v|α + 2(α−α′)|t− v|α−α′|t− v|α′ +
bαc∑
k=0

|t− v|k

k!
2α−k|t− v|α−k


≤ K|t− v|α + |t− v|α

bαc∑
k=0

2α−k

k!

≤ K|t− v|α

Therefore we have IIJ ≤ K|t− v|α for any J . As a result,

∀ t ∈ R , |f(t)− pv(t)| ≤ IJ + IIJ ≤ K|t− v|α

which proves that f is Lipschitz α at v.
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Recall that we are utilizing a real valued wavelet ψ ∈ Cn(R) with n vanishing moments
and with derivatives that have fast decay. We first remark that the proof of Theorem 5.5 can
be adapted to give the following theorem, which measures the uniform Lipschitz regularity
of f over arbitrary intervals [a, b].

Theorem 5.7. If f ∈ L2(R) is uniformly Lipschitz α ≤ n over [a, b], then there exists A > 0
such that

|Wf(u, s)| ≤ Asα+1/2, ∀ (u, s) ∈ [a, b]× (0,∞) (48)

Conversely, suppose that f is bounded and that Wf(u, s) satisfies (48) for α < n that is not
an integer. Then f is uniformly Lipschitz α on [a+ ε, b− ε] for any ε > 0.

Proof. The proof relies on Theorem 5.5 and modifications of its proof. See pages 211–212 of
A Wavelet Tour of Signal Processing for the details.

We now make a few remarks. First, the condition (48) is only meaningful when s → 0,
since in general we have

|Wf(u, s)| = |〈f, ψu,s〉| ≤ ‖f‖2‖ψ‖2

which will supersede (48) for large s. Thus the localized regularity of f is measured by
zooming in on the points u ∈ [a, b].

Second, if ψ has exactly n vanishing moments but f is uniformly Lipschitz α > n on [a, b],
then f ∈ Cn(a, b) and we showed already in (37) that lims→0 s

−(n+1/2)Wf(u, s) = Kf (n)(u)
with K 6= 0. Thus the wavelet coefficients will not decay as O(sα+1/2) despite the higher
regularity of f .

Finally, for the converse of Theorems 5.5 and 5.7, there is the requirement that α /∈ Z.
Indeed, the wavelet decay conditions are not sufficient to conclude α-Lipschitz regularity
when α = n ∈ Z. In the case of [a, b] = R and α = 1, the decay (48) is only sufficient to
conclude that f is in the Zygmund class, which consists of all bounded, continuous functions
for which there exists a constant K such that

|f(t+ v) + f(t− v)− 2f(t)| ≤ K|v|, ∀ t, v ∈ R

For more details, see [4, Chapter 6].

Exercise 48. Read Section 6.1.3 of A Wavelet Tour of Signal Processing.

Exercise 49. Show that f may be pointwise Lipschitz α > 1 at v, while f ′ is not pointwise
Lipschitz α− 1 at v. Consider f(t) = t2 cos(1/t) at t = 0.

Exercise 50. Let f(t) = |t|α. Show that Wf(u, s) = sα+1/2Wf(u/s, 1). Prove that it is not
sufficient to measure the decay of |Wf(u, s)| when s→ 0 at u = 0 in order to compute the
Lipschitz regularity of f at t = 0.
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5.2 Detection of Singularities via Wavelet TransformModulus Max-
ima

Section 6.2.1 of A Wavelet Tour of Signal Processing.

Theorems 5.5 and 5.7 prove that the local regularity of f at v depends on the decay of
|Wf(u, s)| as s→ 0 in the neighborhood of v. However, it is not necessary to measure this
decay in the entire time-scale plane (u, s) ∈ R×(0,∞). Rather, |Wf(u, s)| can be controlled
from its local maxima values.

A wavelet modulus maximum is defined as a point (u0, s0) such that |Wf(u, s0)| is locally
maximum at u = u0. This implies that

∂Wf(u0, s0)

∂u
= 0

This local maximum should be a strict local maximum in either the left or right neighborhood
of u0 to avoid having any local maxima when |Wf(u, s0)| is constant. We call any connected
curve (u, s(u)) in the time-scale plane along which all points are modulus maxima a maxima
line. See Figure 23, which computes the wavelet modulus maxima of the signal from Figure
13 using a wavelet ψ = −θ′.

Compare to the wavelet ridges used to analyze instantaneous frequencies, which were
defined as the local maxima of the scalogram PWf(u, s) = |Wf(u, s)|2. In that case the
ridge points followed the instantaneous frequencies of the signal over time; here the wavelet
modulus maxima trace back to the isolated singularities at a fixed time.

Recall from Theorem 5.4 that if ψ has exactly n vanishing moments and a fast decay,
then there exists θ with fast decay such that

ψ = (−1)nθ(n), θ̂(0) 6= 0

in which case the wavelet transform can be rewritten as

Wf(u, s) = sn
dn

dun
(f ∗ θs)(u)

If the wavelet ψ has only one vanishing moment, then (with the second equality only if
f is differentiable)

Wf(u, s) = s(f ∗ θs)′(u) = sf ′ ∗ θs(u)

1



Figure 23: (a) Wavelet transformWf(u, s); the horizontal and vertical axes give u and log2 s,
respectively. (b) Modulus maxima of Wf(u, s).

2



and so the wavelet modulus maxima are the maxima of the derivative of f after being
smoothed by θs. These maxima locate discontinuities and edges in images. If the wavelet has
two vanishing moments, then the wavelet modulus maxima correspond to high curvatures.
See Figure 24 for an illustration. The next theorem proves that if Wf(u, s) has no modulus
maxima at fine scales, then f is locally regular.

Figure 24: The convolution f ∗θs(u) averages f over a domain proportional to s. If ψ = −θ′,
then W1f(u, s) = s d

du
(f ∗ θs)(u) has modulus maxima at sharp variation points of f ∗ θs(u).

If ψ = θ′′, then the modulus maxima of W2f(u, s) = s2 d2

du2 (f ∗ θs)(u) correspond to locally
maximum curvatures.

Theorem 5.8. Suppose that ψ ∈ Cn(R) with compact support, and ψ = (−1)nθ(n) with
θ̂(0) 6= 0. Let f ∈ L1[a, b]. If there exists s0 > 0 such that |Wf(u, s)| has no local maximum
for u ∈ [a, b] and s < s0, then f is uniformly Lipschitz n on [a+ ε, b− ε] for any ε > 0.

This theorem implies that f can be singular at a point v (i.e., f is Lipschitz α < 1 at v)
only if there is a sequence of wavelet maxima points (up, sp)p∈N that converges to v at fine
scales:

lim
p→∞

up = v and lim
p→∞

sp = 0

These modulus maxima points may or may not be along the same maxima line, however the
theorem does guarantee that all singularities are detected by following the wavelet modulus
maxima at fine scales. The maxima lines in Figure 23 illustrates the result.

Not all wavelets ψ = (−1)nθ(n) guarantee that a modulus maxima located at (u0, s0)
belongs to a maxima line that propagates toward finer scales. When s decreases, Wf(u, s)
may have no more maxima in the neighborhood of u = u0. This leads to spurious wavelet
modulus maxima that make it harder to detect isolated singularities. This phenomena cannot
occur, though, if θ is a Gaussian. Interestingly, in this case the wavelet transform can be

3



written as the solution of the heat equation, where s is proportional to the diffusion time,
and the maximum principle proves that the maxima may not disappear.

We first recall the heat equation on the interval [a, b] (which physically can be thought
of as a rod). Let g(x, τ) be a function of space x ∈ [a, b] and time τ ∈ [0, T ], which measures
the temperature of the rod at x ∈ [a, b] at time τ . We wish to find a g that satisfies the heat
equation,

∂g

∂τ
=
∂2g

∂x2

g(x, 0) = h(x)

for some initial temperature distribution given by h(x). To make this problem well defined we
need to specify the boundary condition of g at x = a, b, which can be either Dirichlet, meaning
that we enforce g(a, τ) = g(b, τ) = 0, or Neumann, meaning that ∂xg(a, τ) = ∂xg(b, τ) = 0.
Since the theorem we are interested in, the maximum principle, holds regardless of boundary
condition, we do not impose a specific one here.

For simplicity, suppose that [a, b] = [0, 1], although this is not necessary. Define R to be
the space time rectangle

R = [0, 1]× [0, T ]

and define B to be the boundary of R, not including the “top,”

B = {(x, τ) ∈ R : τ = 0 or x = 0 or x = 1}

The maximum principle proves that the maximum of g(x, τ) on R must be attained some-
where on B.

Theorem 5.9. If g(x, τ) satisfies the heat equation for x ∈ [0, 1] and τ ∈ [0, T ], then the
maximum value of g occurs at τ = 0 (at the initial condition) or for x = 0 or x = 1 (at the
ends of the rod). More precisely,

sup
(x,τ)∈R

g(x, τ) = sup
(x,τ)∈B

g(x, τ)

Proof. Suppose that (x0, τ0) is an interior maximum point of g. In this case we must have

∂τg(x0, τ0) = 0

Additionally, since maxima occur where the function is concave down, we must have that

∂xxg(x0, τ0) ≤ 0

The inequality cannot be strict, since g is a solution of the heat equation and therefore

∂τg(x, τ) = ∂xxg(x, τ), ∀ (x, τ) ∈ R

In particular, it must be that 0 = ∂τ (x0, τ0) = ∂xxg(x0, τ0).
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Now define a new function

gε(x, τ) = g(x, τ) + εx2, ε > 0

Since g satisfies the heat equation it is easy to see that

∂τgε(x, τ)− ∂xxgε(x, τ) = −2ε < 0 (49)

We first show that gε cannot achieve its maximum at an interior point (x0, τ0). Suppose
that it does. By the same reasoning as above, ∂τgε(x0, τ0) = 0 and ∂xxgε(x0, τ0) ≤ 0. But
then

∂τgε(x0, τ0)− ∂xxgε(x0, τ0) ≥ 0

which contradicts (49).
Thus the maximum of gε must occur on ∂R, the boundary of R. We now show that it

cannot occur when τ = T . Suppose that it does occur at a point (x0, T ). Then again it must
be that ∂xxgε(x0, T ) ≤ 0 and in this case, ∂τgε(x0, T ) ≥ 0 since

∂τgε(x0, T ) = lim
h→0+

gε(x0, T )− gε(x0, T − h)

h
≥ 0

where the inequality follows from the assumption that (x0, T ) is the location of the maximum,
which implies that gε(x0, T ) ≥ gε(x0, T − h). But this would again imply that ∂τgε(x0, T )−
∂xxgε(x0, T ) ≥ 0, contradicting (49).

Therefore we must have

sup
(x,τ)∈R

gε(x, τ) = sup
(x,τ)∈B

gε(x, τ) = sup
(x,τ)∈B

[g(x, τ) + εx2]

≤ sup
(x,τ)∈B

g(x, τ) + sup
(x,τ)∈B

εx2

= sup
(x,τ)∈B

g(x, τ) + ε

On the other hand we also have:

sup
(x,τ)∈R

gε(x, τ) = sup
(x,τ)∈R

[g(x, τ) + εx2] ≥ sup
(x,τ)∈R

g(x, τ)

It follows that
sup

(x,τ)∈R
g(x, τ) ≤ sup

(x,τ)∈B
g(x, τ) + ε, ∀ ε > 0

Letting ε→ 0, we obtain
sup

(x,τ)∈R
g(x, τ) ≤ sup

(x,τ)∈B
g(x, τ)

But since g is continuous and B ⊂ R, we must have equality.

Now we can prove the following theorem:
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Theorem 5.10. Let ψ = (−1)nθ(n), where θ is a Gaussian. For any f ∈ L2(R), the
modulus maxima of Wf(u, s) belong to connected curves that are never interrupted as the
scale decreases.

Proof. To simplify the proof we use a normalized Gaussian

θ(t) =
1

2
√
π
e−t

2/4 =⇒ θ̂(ω) = e−ω
2

Note as well that θs = θs. Let f (n) be the nth derivative of f , which is defined in the sense
of distributions if f (n) is not defined otherwise. Theorem 5.4 proves that

Wf(u, s) = sn
dn

dun
(f ∗ θs)(u) = snf (n) ∗ θs(u)

Consider the heat equation

∂τg(u, τ) = ∂xxg(u, τ), g(u, 0) = h(u)

We can compute the solution by taking the Fourier transform of both sides with respect to
u:

∂τ ĝ(ω, τ) = −ω2ĝ(ω, τ)

It follows that
ĝ(ω, τ) = ĥ(ω)e−τω

2

from which we derive:
g(u, τ) =

1√
τ
h ∗ θ√τ (u)

If we set τ = s2 and h = f (n), then we obtain

sn+1g(u, s2) = snf (n) ∗ θs(u) = Wf(u, s) (50)

Thus the wavelet transform is proportional to the solution of the heat equation with initial
temperature distribution given by f (n).

Recall that a modulus maxima of Wf(u, s) at (u0, s0) is a local maxima of |Wf(u, s)|
for a fixed s and varying u, which due to (50) corresponds to a local maxima of |g(u, s2)|
for a fixed s and varying u. Suppose that a curve of wavelet modulus maxima is interrupted
at (u1, s1) with s1 > 0. Then one can show there exists ε > 0 such that on the domain
[u1 − ε, u1 + ε] × [s1 − ε, s1], the global maximum of |g(u, s2)| is at (u1, s1). However, this
contradicts the maximum principle, and so the curve cannot be interrupted.

Exercise 51. Let f(t) = cos(ω0t) and ψ(t) a wavelet that is even.

(a) Verify that Wf(u, s) =
√
sψ̂(sω0) cos(ω0u).
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(b) Find the equations of the curves of wavelet modulus maxima in the time-scale plane
(u, s). Relate the decay of |Wf(u, s)| along these curves to the number n of vanishing
moments of ψ.

Exercise 52. Prove that if f(t) = 1[0,+∞)(t) then the number of modulus maxima of
Wf(u, s) at each scale s is larger than or equal to the number of vanishing moments of
ψ.
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A wavelet transform, even with ψ = (−1)nθ(n) for θ a Gaussian, may have a maxima line
that converges to a point v even though f is regular at v (i.e., f is Lipschitz α at v for α > 1);
see Figure 23, and the maxima line that converges to v = 0.23. To distinguish such points
from singular points it is necessary to measure the decay of the modulus maxima amplitude.

To interpret more easily the pointwise conditions (38) and (39) of Theorem 5.5, suppose
that for s < s0 all modulus maxima that converge to v are included in a cone Cv defined as:

Cv = {(u, s) ∈ R× (0,∞) : |u− v| ≤ Cs}

Figure 25 gives an illustration. In general this will not be true, in particular for functions f
that have oscillations that accelerate in a neighborhood of v (e.g., f(t) = sin(1/t) for v = 0).

Figure 25: The cone of influence Cv of an abscissa v consists of the time-scale points (u, s)

Within the cone Cv we have |u−v|/s ≤ C, and so the conditions (38) and (39) of Theorem
5.5 can be written for these points as:

|Wf(u, s)| ≤ A′sα+1/2, ∀(u, s) ∈ Cv

This is equivalent to:

log2 |Wf(u, s)| ≤ log2A
′ +

(
α +

1

2

)
log2 s

Thus the Lipschitz regularity at v can be estimated by computing the maximum slope of
log2 |Wf(u, s)| as a function of log2 s along the maxima line converging to v. Figure 26
describes an example.

1



(a) Figure 23 revisited (b) log2 |Wf(u, s)| as a function of log2 s along two
maxima lines.

Figure 26: Figure (b) plots log2 |Wf(u, s)| as a function of log2 s along two maxima lines.
The solid line corresponds to the maxima line that converges to v = 0.05. It has a maximum
slope of α + 1/2 ≈ 1/2, implying that α = 0, which is expected since f(t) is discontinuous
at t = 0.05. The dashed line corresponds to the maxima line converging to v = 0.42. Here
the maximum slope is α + 1/2 ≈ 1, indicating that the singularity is Lipschitz 1/2.
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In practice variations in a signal f(t) may correspond to smooth singularities, for example
due to blur or shadows in an image. In this case, points of rapid transition will technically
be C∞. However, if the blurring effect is from a Gaussian kernel, we can still get precise
measurements on the decay of the wavelet coefficients.

We suppose that in the neighborhood of a sharp transition v, f(t) can be modeled as

f(t) = f0 ∗ gσ(t)

where
gσ(t) =

1√
2πσ

e−t
2/2σ2

If f0 is uniformly Lipschitz α in a neighborhood of v, then we can relate the decay of the
wavelet coefficients to α and σ so long as ψ = (−1)nθ(n) for θ a Gaussian.

Theorem 5.11. Let ψ = (−1)nθ(n) with

θ(t) = λe−t
2/2β2

If f = f0 ∗ gσ and f0 is uniformly Lipschitz α ≤ n on [v − ε, v + ε], then there exists A > 0
such that

|Wf(u, s)| ≤ Asα+1/2

(
1 +

σ2

β2s2

)−(n−α)/2

, ∀ (u, s) ∈ [v − ε, v + ε]× (0,∞)

Proof. Using Theorem 5.4 we write the wavelet transform as:

Wf(u, s) = sn
dn

dun
(f ∗ θs)(u) = sn

dn

dun
(f0 ∗ gσ ∗ θs)(u)

Since gσ and θ are Gaussians, gσ ∗ θs is also a Gaussian and one calculate its scale as:

gσ ∗ θs(t) =

√
s

s0

θs0(t), s0 =

√
s2 +

σ2

β2

Therefore we can rewrite the wavelet transform as

Wf(u, s) = sn
√

s

s0

dn

dun
(f0 ∗ θs0)(u)

=

(
s

s0

)n+1/2

sn0
dn

dun
(f0 ∗ θs0)(u)

=

(
s

s0

)n+1/2

Wf0(u, s0)

Since f0 is uniformly Lipschitz α on [v − ε, v + ε], Theorem 5.7 proves that there exists
A > 0 such that

|Wf0(u, s)| ≤ Asα+1/2, ∀ (u, s) ∈ [v − ε, v + ε]× (0,∞)
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Therefore,

|Wf(u, s)| ≤
(
s

s0

)n+1/2

|Wf0(u, s0)|

≤
(
s

s0

)n+1/2

As
α+1/2
0

= Asn+1/2s
−(n−α)
0

= Asn+1/2

(
s2 +

σ2

β2

)−(n−α)/2

= Asα+1/2

(
1 +

σ2

β2s2

)−(n−α)/2

This theorem relates the wavelet transform decay expected by the Lipschitz α singularity
versus what one observes due to the diffusion at the singularity. At large scales s � σ/β,
the bound is essentially |Wf(u, s)| ≤ Asα+1/2 since the second term becomes nearly equal
to one. In other words, the larger wavelets do not “feel” the blurring effect. However, for
s ≤ σ/β, the decay is more like |Wf(u, s)| ≤ Asn+1/2, which depends upon the number of
vanishing moments of the wavelet, not the regularity of the underlying singularity. This is
because the blurred signal is in fact C∞, and thus the decay at fine scales will necessarily
be limited by the finite number of vanishing moments. Figure 27 gives an example.

Exercise 53. Read Section 6.2.1 of A Wavelet Tour of Signal Processing.
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Figure 27: Top: Signal with two types of singularities, a jump discontinuity at t = 0.35 and
a cusp at t = 0.81. Blurred versions of the same singularities are located at t = 0.60 and
t = 0.12, respectively. (a) The wavelet transform Wf(u, s) using a wavelet ψ = θ′′, where θ
is a Gaussian with variance β = 1. (b) Modulus maxima lines. (c) Decay of log2 |Wf(u, s)|
along the maxima lines. The solid and dashed lines on the left correspond to the maxima
lines converging to t = 0.81 and t = 0.12, respectively. The solid and dashed lines on the
right correspond to the maxima lines converging to t = 0.35 and t = 0.60, respectively. Thus
the solid lines correspond to the singularities, and the dashed lines correspond to the blurred
singularities. Notice that the diffusion modifies the decay for s ≤ σ = 2−5.
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5.3 Stochastic Processes

References for this section are:

1. Wavelet Tour of Signal Processing [1, Section 6.4]: This covers multi-fractals, of which
fractional Brownian motion is an example. We will cover fractional Brownian motion,
but not general multi-fractals.

2. Stochastic Calculus for Finance II [6]: Chapter 1 and 2 are good references for the
basics of measure theoretic probability. Chapter 3 is a good reference for constructing
the Wiener process and understanding its properties.

3. Introduction to random fields and scale invariance [7]: Some additional good informa-
tion. I am getting the plots from these notes. Even though the focus is on random
fields (that is, stochastic processes in which the index variable t ∈ Rd), there is good
info on stochastic processes as well.

The right hand side of the signal in Figure 23 can be modeled as a stochastic process.
Many phenomena of interest can be modeled as stochastic processes that are singular al-
most everywhere, e.g., financial instruments (stocks), heart records, and textures. Knowing
the distribution of singularities is important for analyzing the properties of such processes.
However, pointwise measurements are not possible because the singularities are not isolated.
If the stochastic process is also self-similar, though, wavelet transforms and in particular
wavelet zoom through the layers of self-similarity can extract information about the distri-
bution of singularities. We illustrate this concept on fractional Brownian motions, which are
statistically singular almost everywhere with the same type of singularity, specified by its
Hurst parameter H.

Recall a probability space consists of three things: (i) the set of all outcomes Ω; (ii) the
set of all events F , which is a set of sets, and in which each set A ∈ F is a subset A ⊆ Ω.
We will require that F be a σ-algebra, meaning that (a) ∅ ∈ F ; (b) if A ∈ F , then the
complement of A, denoted Ac, is also in F ; and (c) if A1, A2, . . . ∈ F then ∪i≥1Ai ∈ F . And
finally (iii) a probability measure P : F → [0, 1] that assigns each A ∈ F a probability P(A).
The probability measure must satisfy (a) P(Ω) = 1; and (b) if A1, A2, . . . ∈ F are disjoint,
then

P

(⋃
i≥1

Ai

)
=
∑
i≥1

P(Ai)
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The Borel σ-algebra B on R is the smallest σ-algebra on R that contains all intervals.
Now we can define a random variable.

Definition 5.12. We say X is a random variable defined on the probability space (Ω,F ,P)
if

X : Ω→ R

and
∀B ∈ B , {X ∈ B} = {ω ∈ Ω : X(ω) ∈ B} ∈ F

Definition 5.13. The distribution of a random variable X is the probability measure µX :
B → [0, 1] defined as

µX(B) = P(X ∈ B)

Definition 5.14. A real valued stochastic process X = (X(t))t∈R is a family of random
variables

X(t) : Ω→ R

defined on a probability space (Ω,F ,P).

We will assume that all of our stochastic processes are real valued.

Definition 5.15. The distribution of a stochastic process X is given by all its finite dimen-
sional distributions, that is, the distribution of all real random vectors

(X(t1), . . . , X(td)) , ∀ d ≥ 1 , ∀ t1, t2, . . . , td

Definition 5.16. A stochastic process X is a second order process if E[X(t)2] < +∞ for all
t ∈ R. In this case we may define its:

• Mean function
mX(t) = E[X(t)] =

∫
Ω

X(t)(ω) dP(ω)

The process is centered if mX(t) = 0 for all t ∈ R. Also note that, unfortunately,
the standard notation in harmonic analysis for the frequency variable is ω, but the
standard notation in probability for an outcome is also ω. Hopefully the context will
always be clear and things will not be too confusing.

• Covariance function

CovX(s, t) = Cov(X(s), X(t)) = E[(X(s)− E[X(s)])(X(t)− E[X(t)])]

Note that the variance is given by

VarX(t) = Var(X(t)) = Cov(X(t), X(t)) = E[(X(t)− [X(t)])2]

Definition 5.17. A stochastic process X is Gaussian if for all t1, t2, . . . , td the probability
distribution of the random vector (X(t1), . . . , X(td)) ∈ Rd is normally distributed.
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Figure 28: A sample path (realization) of the Wiener process (Brownian motion).

From the properties of the normal distribution it follows that the probability distribution
of a Gaussian process is entirely determined by the mean function mX(t) and the covariance
function CovX(s, t). A very useful and famous example of a Gaussian process is the Wiener
process (also referred to as Brownian motion), which has wide use in physics and finance and
other fields. Let us denote it by W (t). The Wiener process satisfies the following conditions:

• W is a Gaussian process with W (0) = 0

• W (t) is continous in t

• mW (t) = E[W (t)] = 0 for all t ∈ R

• CovW (s, t) = 1
2
(|s|+ |t| − |t− s|) = min(|s|, |t|) for all s, t ∈ R

Figure 28 plots a sample path (that is, a realization) of the Wiener process.
Let us describe now how to construct the Wiener process. It will give us some intuition

about stochastic processes in general. The main idea is that we are going to construct
a random walk out of an infinite sequence of coin flips. We will then let these coin flips
happen with increasing frequency, until in the limit there is no time between the flips. Let
us now be more precise.

First consider the experiment of flipping a coin once. There are two possible outcomes,
heads or tails, and our probability space is the following:

Ω1 = {H,T}
F1 = {∅, {H}, {T},Ω2}

P1(H) = p

P1(T ) = q = 1− p

3



Note that P1(∅) = 0 and P1(Ω1) = 1 by the properties of probability measures. We define a
random variable on (Ω1,F1,P1) that takes the value +1 for the outcome heads, and −1 for
the outcome tails:

Z(ω) =

{
+1 ω = H
−1 ω = T

(51)

Now let us consider the experiment of flipping a coin infinitely many times, in which all
the flips are independent. In this case our set of outcomes is:

Ω∞ = all infinite sequences of heads (H) and tails (T)

This outcome space is uncountably infinite, so more care is needed in defining its σ-algebra
F∞ and its probability measure P∞. We will do so by specifying the probability of all events
that are based on a finite number of coin tosses. Note that an outcome ω ∈ Ω∞ can be
written as:

ω = ω1ω2ω3 . . .

where each ωi ∈ {H,T}. Now let us build up F∞. We know we have to put ∅,Ω∞ ∈ F∞
with P∞(∅) = 0 and P∞(Ω∞) = 1. Now let us also add in the two events:

AH = {ω ∈ Ω∞ : ω1 = H} = first coin is a heads
AT = {ω ∈ Ω∞ : ω1 = T} = first coin is a tails

Based on the single coin toss probability space, we set

P∞(AH) = p and P∞(AT ) = q

Remember that if A ∈ F then Ac ∈ F , but in this case AcH = AT so we are okay. Also note
the union is AT ∪AH = Ω∞. Now we add in events based on the first two coin tosses, where
the definitions of these events should be clear:

AHH , AHT , ATH , ATT

We set the probabilities accordingly:

P∞(AHH) = p2

P∞(AHT ) = pq

P∞(ATH) = qp

P∞(ATT ) = q2

Now we have to take these four new events, and also consider their compliments and unions,
and also add those events into F∞, and specify their probabilities. This can be done. Then
we continue by considering events based on the first three coin tosses, then the first four
coins tosses, and so on, adding everything into F∞ along with unions and compliments, and
specifying probabilities. We do this for all events which are based on the first k coin tosses,
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for all k ∈ N. Then we complete F∞ by adding in the minimal number of all other events
required to have a σ-algebra.

Now we define the random walk, which is a discrete stochastic process defined over the
probability space (Ω∞,F∞,P∞). We set p = q = 1/2, so the coin if fair, which will make the
walk unbiased. Let M = (M(n))n∈N0 be the random walk, where N0 = {0, 1, 2, . . . , }, and
where each M(n) is a random variable on (Ω∞,F∞,P∞). Define

M(0)(ω) = 0 , ∀ω ∈ Ω∞

That is to say, our random walk will always start at zero. For the remaining steps, recall
that ω = ω1ω2ω3 . . . is an outcome in Ω∞. Let Zi(ωi) be defined as in (51) for each coin flip
ωi. Define M(n) for every n ∈ N as

M(n)(ω) =
n∑
i=1

Zi(ωi) , ω = ω1ω2ω3 . . .

The Wiener process on (Brownian motion) [0,∞) is obtained by rescaling the random
walk M . Define W (m) = (W (m)(t))t∈[0,∞) as

W (m)(t) =

{
(1/
√
m)M(mt) mt ∈ N0

(1/
√
m)[(dmte −mt)M(bmtc) + (mt− bmtc)M(dmte)] mt /∈ N0

We then obtain W = (W (t))t∈[0,∞) by taking m→∞, that is

W (t) = lim
m→∞

W (m)(t)

To obtain a Wiener process on R, we take two independent Wiener processes W1 =
(W1(t))t∈[0,∞) and W2 = (W2(t))t∈[0,∞) and we create one on R by setting:

W (t) =

{
W1(t) t ≥ 0
W2(−t) t < 0

The Wiener process inherits the properties of the random walk. In particular, W (0) = 0
and for all t0 < t1 < t2 < · · · tk the increments

W (t1)−W (t0) , W (t2)−W (t1) , . . . , W (tk)−W (tk−1)

are independent and each increment is normally distributed with

E[W (ti+1)−W (ti)] = 0

Var(W (ti+1)−W (ti)) = ti+1 − ti

The other properties in our original definition also follow from this construction.
Let us now consider another important class of stochastic processes.
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Definition 5.18. A stochastic process X is stationary if, for all u ∈ R, the stochastic process
(X(t+ u))t∈R has the same distribution as X = (X(t))t∈R.

The Wiener process is not stationary, but its increments are. We will come back to this
point later. For now, we remark that stationary processes are translation invariant since
their distribution does not change with a temporal translation by u. Their statistics inherit
this invariance, as the following proposition illustrates.

Proposition 5.19. If a second order stochastic process X is stationary, then

• Its mean function is constant, that is mX(t) = mX for some constant value mX . We
will sometimes write mX = E[X].

• Its covariance function only depends on t− s, that is

CovX(s, t) = RX(t− s)

for some even function RX : R → R. The function RX also satisfies RX(0) ≥ 0 and
|RX(τ)| ≤ RX(0) for all τ ∈ R.

Proof. By the stationarity of X we have X(t)
d
= X(0) (that is, X(t) and X(0) have the

same distribution) and so mX(t) = E[X(t)] = E[X(0)] = mX(0) for all t ∈ R. For the
covariance set RX(τ) = CovX(0, τ). For any s ∈ R we have, again by the stationarity of X,
that (X(s), X(τ + s))

d
= (X(0), X(τ)) and so CovX(s, τ + s) = Cov(0, τ) = RX(τ). Hence

for τ = t− s we have CovX(s, t) = RX(t− s). Since (X(0), X(τ))
d
= (X(−τ), X(0)) we have

RX(τ) = CovX(0, τ) = CovX(−τ, 0) = CovX(0,−τ) = RX(−τ)

and so RX is even. We also have

RX(0) = CovX(0, 0) = Var(X(0)) ≥ 0

Finally, using the Cauchy-Schwarz inequality and the stationarity of X:

|RX(τ)| = |Cov(X(0), X(τ))| ≤
√

Var(X(0))Var(X(τ))

=
√

Var(X(0))Var(X(0))

= Var(X(0))

= RX(0)

Examples of stationary Gaussian processes are given by Ornstein Uhlenbeck processes,
which are defined for any θ > 0 as:

X(t) = e−θtW (e2θt)
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Figure 29: Sample paths of the Ornstein Uhlenbeck process for different values of θ.

where W is the Wiener process. It is clear E[X(t)] = 0 for all t ∈ R. Also a short calculation
shows its covariance is

CovX(s, t) = e−θ|t−s|

and thus only depends on t− s. Figure 29 plots Ornstein Uhlenbeck processes for different
values of θ. Using the previous proposition, we can define the power spectral density (power
spectrum) of a stationary process X.
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Definition 5.20. The power spectral density of a second order stationary process X is the
Fourier transform of RX(τ), that is, R̂X(ω).

For a stationary process X, the function RX(τ) = CovX(0, τ) measures the variability of
random fluctuations ofX over time. The power spectral density organizes the total variability
of X over all times into different frequency components. A time frequency transforms of a
stationary process allow us to measure the variability of X within time-frequency Heisenberg
boxes. For example, the wavelet coefficients of X define a family of new stochastic processes
X ∗ ψs, indexed by the scale parameter s > 0, which are defined as

WX(u, s) = X ∗ ψs(u) =

∫
R
X(t)ψs(u− t) dt

We assume ψs(t) is continuous, real valued, and compactly supported. Note the integral of
a stochastic process with continous sample paths times a continuous deterministic function
f(t), over a finite integral, is a random variable defined using the Riemann integral:∫ b

a

X(t)f(t) dt = lim
n→∞

n−1∑
i=0

X(tni )f(tni )(tni+1 − tni )

where a = tn0 < tn1 < · · · < tnn−1 < tnn = b for all n, and δn = max0≤i≤n−1 |ti+1 − ti| → 0 as
n → ∞. The new stochastic process X ∗ ψs = (X ∗ ψs(u))u∈R retains only the fluctuations
of X at the scale s, for each time u; smaller and larger scale fluctuations are eliminated
because the wavelet ψs has a frequency support essentially supported in a frequency band
determined by the scale s. The next proposition encodes this statement more precisely.

Theorem 5.21. Let X be a second order stationary process with continuous sample paths
and with mean zero, i.e., E[X] = 0, and let ψ be a continuous real valued wavelet with
compact support. Then X ∗ ψs is a stationary process for each s > 0 and:

R̂X∗ψs(ω) = R̂X(ω)|ψ̂s(ω)|2 = s|ψ̂(sω)|2R̂X(ω) (52)

Proof. The fact thatX∗ψs is stationary is straightforward. We also note that since E[X] = 0,
we also have E[X ∗ ψs] = 0 for each s > 0. Thirdly, if RX ∈ L1(R) then RX∗ψs ∈ L1(R);

1



indeed:∫
R
|RX∗ψs(τ)| dτ =

∫
R
|E[X ∗ ψs(0)X ∗ ψs(τ)]| dτ

=

∫
R

∣∣∣∣E [∫
R
X(u)ψs(−u) du ·

∫
R
X(v)ψs(τ − v) dv

]∣∣∣∣ dτ
=

∫
R

∣∣∣∣∫
R

∫
R
E[X(u)X(v)]ψs(−u)ψs(τ − v) du dv

∣∣∣∣ dτ
=

∫
R

∣∣∣∣∫
R

∫
R
RX(u− v)ψs(−u)ψs(τ − v) du dv

∣∣∣∣ dτ (CoV: t = u− v)

=

∫
R

∣∣∣∣∫
R

∫
R
RX(t)ψs(−(t+ v))ψs(τ − v) dt dv

∣∣∣∣ dτ
=

∫
R

∣∣∣∣∫
R
ψs(τ − v)

∫
R
RX(t)ψs(−v − t) dt dv

∣∣∣∣ dτ
=

∫
R

∣∣∣∣∫
R
ψs(τ − v)RX ∗ ψs(−v) dv

∣∣∣∣ dτ
≤
∫
R

∫
R
|ψs(τ − v)RX ∗ ψs(−v)| dv dτ

=

∫
R
|RX ∗ ψs(−v)|

∫
R
|ψs(τ − v)| dτ dv

= ‖ψs‖1‖RX ∗ ψs‖1

≤ ‖RX‖1‖ψs‖2
1

Since ψ is continuous and compactly supported, it is in L1(R) and so the bound is finite,
and RX∗ψs ∈ L1(R).
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Now let us prove (52). Many of the steps are the same as above.

R̂X∗ψs(ω) =

∫
R
RX∗ψs(τ)e−iωτ dτ

=

∫
R
E[X ∗ ψs(0)X ∗ ψs(τ)]e−iωτ dτ

=

∫
R
E
[∫

R
X(u)ψs(−u) du ·

∫
R
X(v)ψs(τ − v) dv

]
e−iωτ dτ

=

∫
R

[∫
R

∫
R
E[X(u)X(v)]ψs(−u)ψs(τ − v) du dv

]
e−iωτ dτ

=

∫
R

[∫
R

∫
R
RX(u− v)ψs(−u)ψs(τ − v) du dv

]
e−iωτ dτ (CoV: t = u− v)

=

∫
R

[∫
R

∫
R
RX(t)ψs(−(t+ v))ψs(τ − v) dt dv

]
e−iωτ dτ

=

∫
R

[∫
R
ψs(τ − v)

∫
R
RX(t)ψs(−v − t) dt dv

]
e−iωτ dτ

=

∫
R

[∫
R
ψs(τ − v)RX ∗ ψs(−v) dv

]
e−iωτ dτ

=

∫
R
RX ∗ ψs(−v)

∫
R
ψs(τ − v)e−iωτ dτ dv

= ψ̂s(ω)

∫
R
RX ∗ ψs(−v)e−iωv dv

= ψ̂s(ω)R̂∗x(ω)ψ̂∗s(ω)

= R̂X(ω)|ψ̂s(ω)|2

where the last equality follows from recalling that RX(τ) is an even function, and hence its
Fourier transform is real valued.

Stationarity is a pretty strict assumption, and as mentioned, does not include the Wiener
process. The notion of a stochastic process with stationary increments relaxes this require-
ment and includes a much larger number of stochastic processes.

Definition 5.22. A stochastic process X has stationary increments if, for all u ∈ R, the
stochastic process (X(t+ u)−X(u))t∈R has the same distribution as (X(t)−X(0))t∈R.

Stochastic processes with stationary increments include many more processes than just
stationary processes, which allows us to model a wider variety of phenomena. Note, in
particular, if X has stationary increments then the mean and variance of an increment
depends only on the length of the increment, not where it started. That is for any u ∈ R,

E[X(t+ u)−X(u)] = E[X(t)−X(0)]

Var(X(t+ u)−X(u)) = Var(X(t)−X(0))

3



An example of a stochastic process with stationary increments is the Wiener process.

Theorem 5.23. The Wiener process, W , has stationary increments.

Proof. Define the stochastic process (W̃ (t))t∈R as

W̃ (t) = W (t+ u)−W (u)

where u ∈ R is fixed but arbitrary. Our goal is to show distribution of W̃ does not depend on
u, which would mean that W has stationary increments. We first note the Wiener process,
W , is a Gaussian process, and thus so is W̃ . Therefore, if we can show the mean function
and the covariance function of W̃ do not depend on u then we are finished. For the mean
function we have

mW̃ (t) = E[W̃ (t)] = E[W (t+ u)]− E[W (u)] = 0− 0 = 0

which is obviously independent of u. For the covariance function we have:

2CovW̃ (s, t)

= 2E[W̃ (s)W̃ (t)]

= 2E[(W (s+ u)−W (u))(W (t+ u)−W (u))]

= 2E[W (s+ u)W (t+ u)] + 2E[W (u)2]− 2E[W (u)W (s+ u)]− 2E[W (u)W (t+ u)]

= |s+ u|+ |t+ u| − |t− s|+ |u|+ |u| − |u| − |u+ s|+ |s| − |u| − |t− u|+ |t|
= |t|+ |s| − |t− s|

which is also independent of u.

Fractional Brownian motion [7, 8] is a generalization of Brownian motion (i.e., the Wiener
process). It depends on a parameter H, which is called the Hurst parameter.

Definition 5.24. A stochastic process BH = (BH(t))t∈R is called a fractional Brownian
motion (fBm) with Hurst parameter H ∈ (0, 1) if it satisfies the following:

• BH is a Gaussian process with BH(0) = 0

• BH(t) is continuous in t

• mBH (t) = E[BH(t)] = 0 for all t ∈ R

• CovBH (s, t) = 1
2
(|s|2H + |t|2H − |t− s|2H) for all s, t ∈ R.

Notice that when H = 1/2 we obtain regular Brownian motion, i.e., the Wiener process.
Figure 30 plots three sample paths of fBm for H = 0.75, while Figure 31 plots sample paths
of fBm for H = 0.15, 0.55, 0.95.

First note, that like the Wiener process, fractional Brownian motion has stationary in-
crements for any H ∈ (0, 1). Indeed, the proof is essentially identical.
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Figure 30: Three sample paths of fractional Brownian mo-
tion with Hurst parameter H = 0.75. Figure taken from
https://en.wikipedia.org/wiki/Fractional_Brownian_motion.

Figure 31: Sample paths of fractional Brownian motion with Hurst parameter H =
0.15 (left), H = 0.55 (middle), and H = 0.95 (right). Figure taken from
https://en.wikipedia.org/wiki/Fractional_Brownian_motion.

We also remark that fBm, and hence the Wiener process too, are self similar. A stochastic
process X = (X(t))t∈R is self-similar of order H if

∀ a > 0 , (X(at))t∈R
d
= aH(X(t))t∈R

From the definition of fBm we see it is self-similar, as its mean function satisfies

E[BH(at)] = 0 = E[aHBH(t)]

and its covariance function satisfies

E[BH(as)BH(at)] =
1

2
(|as|2H + |at|2H − |as− at|2H)

=
a2H

2
(|s|2H + |t|2H − |t− s|2H)

= E[aHBH(s)aHBH(t)]

5
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Furthermore, since it is a Gaussian process, it is completely determined by its mean function
and covariance function.
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Fractional Brownian motions are interesting because they introduce several new behaviors
relative to the Wiener process. For example, recall that the increments of regular Brownian
motion, i.e. the Wiener process, are independent. This is not the case for fractional Brownian
motion when H 6= 1/2. In fact the increments of fBm are negatively correlated for H ∈
(0, 1/2) and positively correlated for H ∈ (1/2, 1). To see this let s1 < t1 < s2 < t2 so that
the intervals [s1, t1] and [s2, t2] are non-overlapping, and observe that

Cov(BH(t1)−BH(s1),BH(t2)−BH(s2))

= E[(BH(t1)−BH(s1))(BH(t2)−BH(s2))]

=
1

2

(
|t2 − s1|2H − |t2 − t1|2H − (|s2 − s1|2H − |s2 − t1|2H)

)
Now note that t2− s1 − (t2 − t1) = t1 − s1 and s2− s1 − (s2 − t1) = t1− s1 and the function
x2H is concave when H ∈ (0, 1/2) and convex when H ∈ (1/2, 1). It follows that

Cov(BH(t1)−BH(s1), BH(t2)−BH(s2))

{
< 0 H ∈ (0, 1/2)
> 0 H ∈ (1/2, 1)

Therefore for H ∈ (0, 1/2) the fBm is counter-persistent. That is, if it was increasing in
the past, it is more likely to decrease in the future. On the other hand, for H ∈ (1/2, 1),
fBm is persistent. That is, the past trend is likely to continue in the future. We can this
phenomenon in Figure 31, in which the the realization for H = 0.15 tends to go up down
with a much higher frequency than than the realization for H = 0.95.

Visually, it would also appear the realizations become smoother with increasing Hurst
parameter H. This is in fact the case, as the modulus of continuity of fractional Brownian
motion is [8]:

ωBH (δ) = δH | log δ|1/2

Thus it is nearly H-Hölder, but not quite. Later on we will show the decay of the wavelet
coefficients as the scale s→ 0 of fractional Brownian motion characterize the Hurst exponent
H, and hence the regularity of BH , even though realizations of BH are nowhere differentiable.

Additionally, fBm have what is called long range dependence when H ∈ (1/2, 1). Let us
explain this in more detail, first by defining what long range dependence means and then by
showing fBm possesses this property. We will say a stationary stochastic process has short
range dependence if ∫

R
|RX(τ)| dτ < +∞
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and a stationary stochastic process has long range dependence if∫
R
|RX(τ)| dτ = +∞ (53)

Alternate definitions remove the absolute value, so that short range dependence means∫
R
RX(τ) dτ < +∞

and long range dependence means ∫
R
RX(τ) dτ = +∞

Either way, recall if a stationary stochastic process is centered, i.e., E[X(t)] = 0 for all t ∈ R,
then

∀ t ∈ R , RX(τ) = E[X(t)X(t+ τ)]

Thus RX(τ) measures the correlation between X(t) and X(t + τ), which has time lag of τ .
For stationary processes with short range dependence, this sum total (integration) of this
correlation over all possible lags is finite, indicating these correlations must decay rapidly as
the lag τ increases. On the other hand, stationary processes with long range dependence have
correlations that persist even through large time lags, as indicated by (53). This behavior
implies the process has “memory,” which can be useful in many modeling situations.

Alternatively, one can say a stationary stochastic process has long range dependence if
there exists a real number γ ∈ (0, 1) such that

lim
τ→+∞

τ γRX(τ) = cX

for some constant cX > 0. This is a characterization of long range dependence in the time
domain, and it implies (53). We can also define long range dependence in the frequency
domain. Indeed, from the frequency perspective, we say X has long range dependence if
there exists a real number β ∈ (0, 1) and a constant c̃X > 0 such that

lim
ω→0
|ω|βR̂X(ω) = c̃X (54)

This frequency condition (54) also implies (53).
Notice the Ornstein-Uhlenbeck process has short range dependence since RX(τ) = e−θ|τ |

and thus ∫
R
RX(τ) dτ =

2

θ

or, from the time perspective,

lim
τ→+∞

τ γe−θτ = 0 , ∀ γ ∈ (0, 1)
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Fractional Brownian motion for Hurst parameter H ∈ (1/2, 1) is said to have long range
dependence, but an fBm BH is not stationary, so we need to make sense of this statement.
One way to do so is to define a new random process based on the increments of BH ,

B̃H = (BH(t+ 1)−BH(t))t∈R

We will not take this path. Another path is to filter a stochastic process that has stationary
increments with a wavelet transform. It turns out that the resulting process is stationary.
As we mentioned earlier, since fBm is also self-similar, we will also be able to leverage the
wavelet coefficients to characterize the self-similarity / regularity of BH . First let us prove
the following proposition.

Proposition 5.25. Let X be a stochastic process with stationary increments and continuous
sample paths. Let ψ be a continuous real valued wavelet with compact support. Then X ∗ ψ
is a stationary process.

Proof. Let s, t ∈ R. Since ψ has zero average, we have:

X ∗ ψ(t) =

∫
R
X(t− u)ψ(u) du

=

∫
R
X(t− u)ψ(u) du−X(t)

∫
R
ψ(u) du

=

∫
R
[X(t− u)−X(t)]ψ(u) du

d
=

∫
R
[X(s− u)−X(s)]ψ(u) du

= X ∗ ψ(s)

Letting s = t+ u we can apply the same argument to conclude:

(X ∗ ψ(t+ u))t∈R
d
= (X ∗ ψ(t))t∈R

Thus, in particular, BH ∗ ψs is a stationary process for any scale parameter s > 0, since
ψs is a wavelet. This means that its covariance function can be written as

CovBH∗ψs(t, t+ τ) = RBH∗ψs(τ)

On the other hand, we cannot directly apply Theorem 5.21 because BH is not stationary.
Nevertheless, we have the following result:

Theorem 5.26. Let BH be a fractional Brownian motion with Hurst parameter H. Let ψ be
continuous, real valued wavelet with compact support. Then BH ∗ψ is a stationary Gaussian
process and

R̂BH∗ψ(ω) =
λH

2|ω|2H+1
|ψ̂(ω)|2 (55)

for some constant λH > 0.
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Since RBH∗ψ is not integrable we must understand (55) in the sense of distributions. This
means the proof must leverage the distributional definition of the Fourier transform. We give
a brief overview now.

Recall the space of Schwartz class functions S = S(R), which we originally defined in the
proof of Theorem 2.18. The definition was:

S =

{
ϕ ∈ C∞(R) : ∀m,n ∈ Z with m,n ≥ 0 , sup

t∈R
|t|m|ϕ(n)(t)| <∞

}
We note that if ϕ ∈ S then ϕ(n) has fast decay, that is

|ϕ(n)(t)| ≤ Cm,n
1 + |t|m

, ∀m,n ≥ 0

Now define the dual space of S. It is denoted as S ′, and is referred to as the space of
tempered distributions. It consists of all continuous linear functionals defined on S:

S ′ = {T : S → C : T is continuous and linear}

In order to understand what T “continuous” means, we need to place a metric on S. To that
end, define

‖ϕ‖m,n = sup
t∈R
|t|m|ϕ(n)(t)|

Each ‖ · ‖m,n defines a semi-norm on S. We define the metric on S as

d(ϕ1, ϕ2) =
∑
m,n≥0

1

2m+n
· ‖ϕ1 − ϕ2‖m,n

1 + ‖ϕ1 − ϕ2‖m,n

Once can prove that S is complete with the metric d(ϕ1, ϕ2). Furthermore, if T ∈ S ′ then
there exists some d ∈ Z and constants cm,n ≥ 0 such that

|T (ϕ)| ≤
d∑

m=0

d∑
n=0

cm,n‖ϕ‖m,n (56)

Conversely, if T is a linear functional and (56) holds for some d ∈ Z and cm,n ≥ 0, then T is
continuous and T ∈ S ′.

Now let us give some examples of tempered distributions T ∈ S ′.

Example 5.27. The Dirac distribution δ : S → C, defined as:

δ(ϕ) = ϕ(0)

We can generalize it to δt : S → C,
δt(ϕ) = ϕ(t)
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Example 5.28. Let f be Lebesgue measurable and

|f(t)| ≤ g(t)(1 + |t|m)

for some m ≥ 0 with g ∈ L1(R) and g(t) ≥ 0. Then Tf ∈ S ′ where

Tf (ϕ) =

∫
R
f(t)ϕ(t) dt

Indeed,

|Tf (ϕ)| ≤
∫
R
g(t)(1 + |t|m)|ϕ(t)| dt

≤ sup
u∈R

(1 + |u|m)|ϕ(u)| ·
∫
R
g(t) dt

<∞

Note that f does not have to be in L1(R) or L2(R).

Now we want to define the Fourier transform of a tempered distribution T ∈ S ′, which
we will denote by T̂ . We first note that for ϕ ∈ S, we can use the L1(R) definition of the
Fourier transform to define ϕ̂:

ϕ̂(ω) =

∫
R
ϕ(t)e−iωt dt

Since ϕ ∈ C∞(R) and ϕ(n)(t) has fast decay for each n ≥ 0, ϕ̂ ∈ C∞(R) and ϕ̂(n)(ω) has fast
decay for each n ≥ 0 as well. Therefore ϕ̂ ∈ S. Furthermore, for f, ϕ ∈ S, using Fubini’s
Theorem we have

Tf̂ (ϕ) =

∫
R
f̂(t)ϕ(t) dt =

∫
R

[∫
R
f(ω)e−iωt dω

]
ϕ(t) dt

=

∫
R
f(ω)

[∫
R
ϕ(t)e−iωt dt

]
dω

=

∫
R
f(ω)ϕ̂(ω) dω

= Tf (ϕ̂)

Inspired by this correspondence we make the following definition.

Definition 5.29. The Fourier transform of a tempered distribution T ∈ S ′ is the tempered
distribution T̂ ∈ S ′ defined as

T̂ (ϕ) := T (ϕ̂) , ∀ϕ ∈ S
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Example 5.30. For the Dirac distribution

δ̂(ϕ) = δ(ϕ̂) = ϕ̂(0) =

∫
R
ϕ(t) dt = TχR(ϕ)

where χA(t) = 1 if t ∈ A ⊆ R and χA(t) = 0 if t /∈ A. Hence the interpretation from earlier
in the course that δ̂(ω) = 1 for all ω ∈ R.

Example 5.31. Let f ∈ L1(R). Then using Fubini’s Theorem:

T̂f (ϕ) = Tf (ϕ̂) =

∫
R
f(t)ϕ̂(t) dt

=

∫
R
f(t)

[∫
R
ϕ(ω)e−iωt dω

]
dt

=

∫
R

[∫
R
f(t)e−iωt dt

]
ϕ(ω) dω

=

∫
R
f̂(ω)ϕ(ω) dω = Tf̂ (ϕ)

and thus the L1(R) definition of the Fourier transform agrees with the distributional defini-
tion of the Fourier transform.

Our last example is more complicated, and needed for the proof of Theorem 5.26, so we
collect it in the following lemma.

Lemma 5.32. Let f(t) = |t|α for α > 0. Then, in the sense of distributions,

f̂(ω) = λα|ω|−(1+α)

That is
T̂f (ϕ) = λα · p.v.

∫
R
|ω|−(1+α)ϕ(ω) dω = lim

ε→0+

∫
|ω|>ε
|ω|−(1+α)ϕ(ω) dω

Proof. For the purposes of this proof define ϕs(t) = ϕ(st). A tempered distribution T ∈ S ′
is homogeneous of order α if

∀ s > 0 , ϕ ∈ S , T (ϕ) = s1+αT (ϕs)

We first show that if T is homogeneous of order α, then T̂ is homogeneous of order −(1+α).
Indeed we know:

ϕ̂s(ω) = s−1ϕ̂(s−1ω) = s−1ϕ̂s−1(ω)

Therefore:

T̂ (ϕs) = T (ϕ̂s)

= s−1T (ϕ̂s−1)

= s−1s1+αT (ϕ̂)

= sαT̂ (ϕ)
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Rearranging:
T̂ (ϕ) = s−αT̂ (ϕs) = s1−(1+α)T̂ (ϕ)

Now observe that Tf with f(t) = |t|α is homogeneous of order α since

Tf (ϕs) =

∫
R
|t|αϕ(st) dt =

∫
R
|u/s|α ϕ(u)

du

s
= s−(1+α)

∫
R
|u|αϕ(u) dus−(1+α)Tf (ϕ)

Therefore T̂f must be homogeneous of order −(1 + α). Additionally, f(t) = |t|α is even,
which means Tf (ϕ) is “even,” where the latter means

Tf (ϕ−1) = Tf (ϕ)

Furthermore, since f(t) = |t|α is real valued, Tf (ϕ) is real valued for all real valued ϕ ∈
S. It follows that T̂ (ϕ) must also be even and real valued if ϕ is real valued. But the
only distributions which are homogeneous of order −(1 + α), even, and real valued, are
c|ω|−(1+α).

Proof of Theorem 5.26. Set f(t) = RBH∗ψ(t). We compute:

T̂f = Tf (ϕ̂)

=

∫
R
RBH∗ψ(t)ϕ̂(t) dt

=

∫
R
E[BH ∗ ψ(0)BH ∗ ψ(t)]ϕ̂(t) dt

=

∫
R
E
[∫

R
BH(u)ψ(−u) du ·

∫
R
BH(v)ψ(t− v) dv

]
ϕ̂(t) dt

=

∫
R

[∫
R

∫
R
E[BH(u)BH(v)]ψ(−u)ψ(t− v) du dv

]
ϕ̂(t) dt

=
1

2

∫
R

[∫
R

∫
R
(|u|2H + |v|2H − |u− v|2H)ψ(−u)ψ(t− v) du dv

]
ϕ̂(t) dt

=
1

2

∫
R

[ ∫
R
|u|2Hψ(−u)

∫
R
ψ(t− v) dv︸ ︷︷ ︸

=0

du+

∫
R
|v|2Hψ(t− v)

∫
R
ψ(−u) du︸ ︷︷ ︸

=0

dv − · · ·

· · · −
∫
R

∫
R
|u− v|2Hψ(−u)ψ(t− v) du dv

]
ϕ̂(t) dt

= −1

2

∫
R

∫
R

∫
R
|u− v|2Hψ(−u)ψ(t− v)ϕ̂(t) du dv dt (CoV: x = t− v)

= −1

2

∫
R

∫
R

∫
R
|t− (u+ x)|2Hψ(−u)ψ(x)ϕ̂(t) du dx dt

= −1

2

∫
R

∫
R
ψ(−u)ψ(x)

[∫
R
|t− (u+ x)|2Hϕ̂(t) dt

]
︸ ︷︷ ︸

I

du dx (57)
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Now let us evaluate the integral I. First make a change of variables y = t − (u + x). One
obtains:

I =

∫
R
|y|2Hϕ̂(y + u+ x) dy

=

∫
R
|y|2H

[∫
R
ϕ(ω)e−iω(y+u+x) dω

]
dy

=

∫
R
|y|2H

[∫
R
eiω(u+x)ϕ(ω)e−iωy dω

]
dy

=

∫
R
|y|2HF(M−(u+x)ϕ)(y) dy

[
(Mvϕ)(y) = eivyϕ(y)

]
= −

∫
R
λH |ω|−(2H+1)e−iω(u+x)ϕ(ω) dω (58)

where in the last line we used Lemma 5.32. Now plug (58) into (57) to obtain:

(57) =
λH
2

∫
R

∫
R
ψ(−u)ψ(x)

[∫
R
|ω|−(2H+1)e−iω(u+x)ϕ(ω) dω

]
du dx

=
λH
2

∫
R
|ω|−(2H+1)ϕ(ω)

∫
R
ψ(−u)e−iωu du

∫
R
ψ(x)e−iωx dx dω

=

∫
R

λH
2
|ω|−(2H+1)ψ̂∗(ω)ψ̂(ω)ϕ(ω) dω

=

∫
R

λH
2
|ω|−(2H+1)|ψ̂(ω)|2ϕ(ω) dω

We conclude that, in the distributional sense,

R̂BH∗ψ(ω) =
λH

2|ω|2H+1
|ψ̂(ω)|2

It is tempting to think of the “power spectral density of BH” as (λH/2)|ω|−(2H+1) but
this is not quite correct, and would lead, for example, to the wrong interpretation of its long
range dependence property. Recall that since ψ is a wavelet,

ψ̂(ω) = O(ω) as ω → 0

and thus |ψ̂(ω)|2 = O(|ω|2). It follows that

R̂BH∗ψ(ω) = O(|ω|1−2H)

Thus when H ∈ (1/2, 1) we see that

lim
ω→0
|ω|2H−1R̂BH∗ψ(ω) = c > 0
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with 0 < 2H − 1 < 1. Therefore we see that BH ∗ ψ has long range dependence. Notice,
however, for H ∈ (0, 1/2) the same cannot be said since

∀H ∈ (0, 1/2) , lim
ω→0

R̂BH∗ψ(ω) = c · lim
ω→0
|ω|1−2H = 0

Using the self-similarity of fBm, one can also show:

WBH(u, s)
d
= sH+1/2WBH

(u
s
, 1
)

We leave the details as an exercise.

Exercise 54. Read Section 6.4 of A Wavelet Tour of Signal Processing.

Exercise 55. Let ψ be a continuous, compactly supported, real valued wavelet. Recall
Wf(u, s) = f ∗ ψs(u) with ψ(t) = ψ(−t). Prove:

E[WBH(u, s)WBH(v, s)] = −s
2H+1

2

∫
R
|t|2Hψ ∗ ψ

(
u− v
s
− t
)
dt

Observe that since BH is a Gaussian process and

E[WBH(u, s)] = E
[∫

R
BH(t)ψs(t− u) dt

]
=

∫
R
E[BH(t)]ψs(t− u) dt = 0

you now have a direct proof that (WBH(u, s))u∈R is a stationary stochastic process.

Exercise 56. Let X be a second order stochastic process that is self-similar of order H
with continuous sample paths, and let ψ be a continuous, compactly supported real valued
wavelet.

(a) Prove:
X ∗ ψs(u)

d
= sH+1/2X ∗ ψ

(u
s

)
Conclude that if X also has stationary increments then:

E[|X ∗ ψs(u)|] = sH+1/2E[|X ∗ ψ(0)|]

(b) Suppose X also has stationary increments. Prove:

E[||X ∗ ψs1| ∗ ψs2(u)|]
s

1/2
1 E[|X ∗ ψs1(u)|]

=
E[||X ∗ ψ| ∗ ψs2/s1(0)|]

E[|X ∗ ψ(0)|]

The numerator of the left hand side is called a wavelet scattering moment. Give an
interpretation of this result.
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Exercise 57. One can obtain realizations of fractional Brownian motion in MATLAB us-
ing the wfbm function (https://www.mathworks.com/help/wavelet/ref/wfbm.html) or in
Python using the fbm package (available at: https://pypi.org/project/fbm/).

(a) Generate realizations of fractional Brownian motion for three different Hurst param-
eters H, one with H < 1/2, one with H = 1/2 (regular Brownian motion), and one
with H > 1/2. Provide a plot of each realization. Using your code for the real valued
wavelet transform from Exercise 44, compute the wavelet transform for each realization
and plot the wavelet coefficients as in Figure 6.22(b) from the book.

Remark: You should generate long realizations of fBm with N ≥ 10000.

(b) Now estimate the Hurst parameter H using the moments computed in Exercise 56(a).
Do so by noting that Exercise 56(a) implies

F (log2 s) := log2 E[|BH ∗ ψs(u)|] = (H + 1/2) log2 s+ log2 E[|BH ∗ ψ(0)|] (59)

Since |BH ∗ ψs| is stationary for each s > 0, the function F (log2 s) on the left hand
side of (59) does not depend on u and can be considered as a function of log2 s.
The right hand side of (59) shows F (log2 s) is linear with a slope of H + 1/2. Plot
F (log2 s) = log2 E[|BH ∗ ψs(u)|] as a function of log2 s for your three realizations from
part (a). Estimate the slope numerically and compare it to the true value of H.

Remark: To estimate E[|BH ∗ ψs(u)|] note that |BH ∗ ψs| is stationary. For a sta-
tionary process Y , one can estimate E[Y (t)] = E[Y (0)] by computing:

1

N

N∑
i=1

Y (ti) ≈ E[Y (0)]

for large N .
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6 Frames
Chapter 5 of A Wavelet Tour of Signal Processing.

The windowed Fourier transform Sf(u, ξ) and the wavelet transform Wf(u, s) are examples
of signal analysis operators, which can be put in a more general context via Frame theory.
Frame theory will give us the mathematical foundation to consider general dictionaries of
time frequency atoms. It will, additionally, give as the mathematical framework to synthesize
signals, not just analyze them. This will be useful for, amongst other reasons, obtaining
sparse compression of signals using just their wavelet modulus maxima coefficients. For now
we leave wavelets to study frames, but we will return to wavelets possessing the framework to
not only complete their story, but also the tools to chart a path forward into signal analysis
via more general dictionaries.

6.1 Frames and Riesz Bases

Section 5.1 of A Wavelet Tour of Signal Processing.

6.1.1 Stable Analysis and Synthesis Operators

Section 5.1.1 of A Wavelet Tour of Signal Processing.

Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖f‖ =
√
〈f, f〉. The main

examples we will want to keep in the back of our mind are the ones we have encountered
thus far in the course, i.e., L2(R), `2, and RN or CN . Consider a dictionary

D = {φγ}γ∈Γ ⊂ H

consisting of atoms φγ ∈ H, in which the index set Γ is either finite or countable. The
analysis operator associated to D is:

Φf(γ) = 〈f, φγ〉, γ ∈ Γ, f ∈ H

The dictionary D is a frame for H if there exist constants 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∑
γ∈Γ

|〈f, φγ〉|2 ≤ B‖f‖2 (60)
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When A = B the frame is tight. If the atoms in D are independent, then the frame is not
redundant and it is called a Riesz basis. We shall see later that frames define invertible
operators on image(Φ).

We remark that if a Hilbert space H admits a frame D, then H must be separable.
Indeed, suppose that 〈f, φγ〉 = 0 for all γ ∈ Γ. Then using the lower bound of (60), we
obtain:

A‖f‖2 ≤
∑
γ∈Γ

|〈f, φγ〉|2 = 0 =⇒ f = 0

Thus the only element of H orthogonal to every φγ ∈ D is f = 0. It follows (with some
work) that D must be a complete set of functions in H. This means that for each f ∈ H and
for each ε > 0 there exists an N ∈ N, {γn}Nn=1 ⊂ Γ and coefficients {cn}Nn=1 ⊂ C such that∥∥∥∥∥f −

N∑
n=1

cnφγn

∥∥∥∥∥ ≤ ε

Since we can additionally take the coefficients {cn}Nn=1 to have rational real and imaginary
parts, we have found a dense subset of H.

The analysis operator Φ analyzes a signal f ∈ H by testing it against the dictionary
atoms φγ. The adjoint of Φ defines a synthesis operator, which we now explain. Consider
the space of `2 sequences indexed by Γ:

`2(Γ) = {a : ‖a‖2 =
∑
γ∈Γ

|a[γ]|2 <∞}

Notice that the frame condition (60) guarantees that

Φ : H → `2(Γ)

Therefore Φ has an adjoint
Φ∗ : `2(Γ)→ H

which is defined through the following relation:

〈Φ∗a, f〉H = 〈a,Φf〉`2(Γ)

where the subscript on the inner products 〈·, ·〉 is written to emphasize the space over which
the inner product is computed (moving forward we will drop this subscript and infer the
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space from the context). Notice that

〈a,Φf〉 =
∑
γ∈Γ

a[γ]〈f, φγ〉∗

=
∑
γ∈Γ

a[γ]〈φγ, f〉

=
∑
γ∈Γ

〈a[γ]φγ, f〉

=

〈∑
γ∈Γ

a[γ]φγ, f

〉
from which it follows that

Φ∗a =
∑
γ

a[γ]φγ

We refer to Φ∗ as the synthesis operator since it synthesizes signals in H from the sequence
a ∈ `2(Γ).

Notice that the frame condition (60) can be rewritten as:

A‖f‖2 ≤ ‖Φf‖2 = 〈Φ∗Φf, f〉 ≤ B‖f‖2

where
Φ∗Φf =

∑
γ∈Γ

〈f, φγ〉φγ (61)

Notice that (61) looks exactly like the formula you get for expanding a vector f in an
orthonormal basis. However, Φ here is a frame and so in general (61) will not return f but
rather another element of H. Back to the point at hand, it follows that we can take A and
B as:

A = inf
f∈H

〈Φ∗Φf, f〉
‖f‖2

B = sup
f∈H

〈Φ∗Φf, f〉
‖f‖2

This is just the infimum and supremum of the Rayleigh quotient of Φ∗Φ. In finite dimensions,
this implies that A is the smallest eigenvalue of Φ∗Φ and B is the largest eigenvalue of Φ∗Φ;
note that the eigenvalues of Φ∗Φ are the singular values of Φ. The next theorem shows that
if the frame analysis operator is stable (as defined by the frame condition (60)), then the
frame synthesis operator obeys a similar stability condition.

Theorem 6.1. A dictionary D = {φγ}γ∈Γ is a frame with bounds 0 < A ≤ B < ∞ if and
only if

A‖a‖2 ≤

∥∥∥∥∥∑
γ∈Γ

a[γ]φγ

∥∥∥∥∥
2

≤ B‖a‖2, ∀ a ∈ image(Φ)
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Proof. Note that ∥∥∥∥∥∑
γ∈Γ

a[γ]φγ

∥∥∥∥∥
2

= 〈Φ∗a,Φ∗a〉 = 〈ΦΦ∗a, a〉

The theorem will thus follow if we can show that

inf
f∈H

〈Φ∗Φf, f〉
‖f‖2

= inf
a∈image(Φ)

〈ΦΦ∗a, a〉
‖a‖2

(62)

and
sup
f∈H

〈Φ∗Φf, f〉
‖f‖2

= sup
a∈image(Φ)

〈ΦΦ∗a, a〉
‖a‖2

(63)

Let us first consider the case of a finite dimensional Hilbert space. In this case H ∼= RN

or H ∼= CN . Suppose that D is a frame and let λ be an eigenvalue of Φ∗Φ with eigenvector
fλ 6= 0. Note the frame condition implies Φ∗Φ is invertible and every eigenvalue satisfies
A ≤ λ ≤ B. Furthermore Φ∗Φ can be identified with an N × N matrix. We claim that
Φfλ ∈ image(Φ) is an eigenvector of ΦΦ∗ also with eigenvalue λ; indeed:

ΦΦ∗(Φfλ) = ΦΦ∗Φfλ = λΦfλ

Furthermore Φfλ 6= 0 since the frame bounds (60) imply that ‖Φfλ‖2 ≥ A‖fλ‖2. Since
dim(image(Φ)) = N , we have shown the eigenvalues of Φ∗Φ and ΦΦ∗|image(Φ) are identical
and we conclude that (62) and (63) hold.

Now suppose that H is infinite dimensional and D is a frame for H. From our previous
discussion, we know that H is separable, which means that H has a countable orthonormal
basis. Let B = {e1, e2, . . .} ⊂ H be such a basis. Define

HN = span{e1, . . . , eN} ⊂ H

Let ΦN = Φ|HN , that is ΦN is the restriction of Φ to HN . Notice that limN→∞HN = H and
limN→∞ image(ΦN) = image(Φ). Using the proof for the finite dimensional case, we then
have:

inf
f∈H

〈Φ∗Φf, f〉
‖f‖2

= lim
N→∞

inf
f∈HN

〈Φ∗Φf, f〉
‖f‖2

= lim
N→∞

inf
a∈image(ΦN )

〈ΦΦ∗a, a〉
‖a‖2

= inf
a∈image(Φ)

〈ΦΦ∗a, a〉
‖a‖2

The proof for the supremum is identical.

The operator ΦΦ∗ : image(Φ)→ image(Φ) is the Gram “matrix”. It is defined as:

ΦΦ∗a[γ] =
∑
m∈Γ

a[m]〈φm, φγ〉, ∀ a ∈ image(Φ)

The next theorem shows that the redundancy of a finite frame in finite dimensions is
easy to measure, and is the obvious answer.
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Theorem 6.2. Let D = {φn}Pn=1 be a finite frame for RN or CN in which ‖φn‖ = 1 for all
1 ≤ n ≤ P . Then the frame bounds satisfy:

A ≤ P

N
≤ B

and the frame is tight if and only if A = B = P/N .

The proof is on page 157 of A Wavelet Tour of Signal Processing and is quite simple.
Tight frames are easy to come up with by concatenating orthonormal bases. For 1 ≤ k ≤ K,
suppose that {φk,γ}γ∈Γ is an orthonormal basis for H. Since it is an orthonormal basis we
have: ∑

γ∈Γ

|〈f, φk,γ〉|2 = ‖f‖2

The dictionary
D = {φk,γ}γ∈Γ, 1≤k≤K

is a tight frame with A = B = K; indeed:

K∑
k=1

∑
γ∈Γ

|〈f, φk,γ〉|2 =
K∑
k=1

‖f‖2 = K‖f‖2

Exercise 58. Read Section 5.1.1 of A Wavelet Tour of Signal Processing.

6.1.2 Dual Frame and Pseudo Inverse

Section 5.1.2 of A Wavelet Tour of Signal Processing.

If D = {φγ}γ∈Γ is a frame but not a Riesz basis, then the frame analysis operator Φ admits
an infinite number of left inverses M such that

MΦf = f, ∀ f ∈ H

This is because of the redundancy of D, which ensures that image(Φ)⊥ 6= {0}, and so the left
inverse is free to map a ∈ image(Φ)⊥ to any function g ∈ H. The pseudo-inverse, written as
Φ†, is the left inverse M that maps image(Φ)⊥ to 0:

Φ†Φf = f, ∀ f ∈ H and Φ†a = 0, ∀ a ∈ image(Φ)⊥

The next theorem computes the pseudo-inverse explicitly.

Theorem 6.3. If D = {φγ}γ∈Γ is a frame then Φ∗Φ is invertible and

Φ† = (Φ∗Φ)−1Φ∗
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Proof. First recall that we can rewrite the frame condition (60) as:

A‖f‖2 ≤ 〈Φ∗Φf, f〉 ≤ B‖f‖2

Thus
Φ∗Φf = 0⇐⇒ f = 0

and so Φ∗Φ is invertible. It follows that

(Φ∗Φ)−1(Φ∗Φ)f = f

which shows that M = (Φ∗Φ)−1Φ∗ is a left inverse for Φ. Now we show that M = Φ†.
We first show that null(Φ∗) = image(Φ)⊥. Let a ∈ null(Φ∗) and b ∈ image(Φ) with

Φf = b. Then:
〈a, b〉 = 〈a,Φf〉 = 〈Φ∗a, f〉 = 〈0, f〉 = 0

Thus null(Φ∗) ⊆ image(Φ)⊥. Similarly, now let a ∈ image(Φ)⊥, so that:

a ∈ image(Φ)⊥ =⇒ 〈a,Φf〉 = 0 , ∀ f ∈ H
=⇒ 〈Φ∗a, f〉 = 0 , ∀ f ∈ H
=⇒ Φ∗a = 0

=⇒ a ∈ null(Φ∗)

Therefore image(Φ)⊥ ⊆ null(Φ∗) and we conclude that image(Φ)⊥ = null(Φ∗). But then

(Φ∗Φ)−1Φ∗a = 0, ∀ a ∈ image(Φ)⊥ = null(Φ∗)

and so we have Φ† = (Φ∗Φ)−1Φ∗.

The pseudo-inverse implements a signal synthesis with the (canonical) dual frame, defined
by:

φ̃γ = (Φ∗Φ)−1φγ

which has associated frame analysis operator

Φ̃f(γ) = 〈f, φ̃γ〉

The next theorem shows that the dual frame synthesis operator is indeed the pseudo-inverse
of the original frame analysis operator, and that the dual frame is in fact a frame.

Theorem 6.4. Let D = {φγ}γ∈Γ be a frame with frame bounds 0 < A ≤ B <∞. Then the
dual frame synthesis operator satisfies

Φ̃∗ = Φ† (64)

and thus
f =

∑
γ∈Γ

〈f, φγ〉φ̃γ =
∑
γ∈Γ

〈f, φ̃γ〉φγ (65)
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Furthermore, the dual dictionary
D̃ = {φ̃γ}γ∈Γ

is a frame (hence the name dual frame) with frame bounds 0 < 1/B ≤ 1/A < ∞, meaning
that

1

B
‖f‖2 ≤

∑
γ∈Γ

|〈f, φ̃γ〉|2 ≤
1

A
‖f‖2, ∀ f ∈ H (66)

If the frame is tight (i.e., A = B), then

φ̃γ =
1

A
φγ

To prove this theorem, we will need the following lemma.

Lemma 6.5. If L : H → H is a self-adjoint operator such that there exists 0 < A ≤ B <∞
satisfying

A‖f‖2 ≤ 〈Lf, f〉 ≤ B‖f‖2, ∀ f ∈ H (67)

then L is invertible and

1

B
‖f‖2 ≤ 〈L−1f, f〉 ≤ 1

A
‖f‖2, ∀ f ∈ H (68)

Proof. Suppose first that H is finite dimensional of dimension N . Since L is self-adjoint, it
has an orthonormal set of eigenvectors e1, . . . , eN ∈ H with eigenvalues λ1, . . . , λN such that

Lek = λkek, ∀ 1 ≤ K ≤ N

Equation (67) implies that A ≤ λk ≤ B for each k. The operator L is therefore invertible,
and it’s eigenvalues are λ−1

k with the same orthonormal eigenvectors ek for 1 ≤ k ≤ N . It
follows that (68) must hold. The proof is extended to infinite dimensions using the same
technique as in the proof of Theorem 6.1.

Proof of Theorem 6.4. We first rewrite the dual analysis operator (noting that Φ∗Φ is self-
adjoint, and thus so is (Φ∗Φ)−1):

Φ̃f(γ) = 〈f, φ̃γ〉 = 〈f, (Φ∗Φ)−1φγ〉
= 〈(Φ∗Φ)−1f, φγ〉
= Φ(Φ∗Φ)−1f(γ)

Thus
Φ̃ = Φ(Φ∗Φ)−1

and we compute:
Φ̃∗ = (Φ∗Φ)−1Φ∗ = Φ†

That proves (64).
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Note that (65) can be written as:

I = Φ̃∗Φ = Φ∗Φ̃

where I is the identity operator. Since Φ̃∗ = Φ†, we have

Φ̃∗Φ = Φ†Φ = I (69)

Using the facts that (Φ̃∗Φ)∗ = Φ∗Φ̃ and I∗ = I, and taking the adjoint of both sides of (69),
we obtain the second equality.

For the proof of (66), we use Lemma 6.5. Recall that the frame conditions can be
rewritten as:

A‖f‖2 ≤ 〈Φ∗Φf, f〉 ≤ B‖f‖2, ∀ f ∈ H

Applying Lemma 6.5 to L = Φ∗Φ proves that

1

B
‖f‖2 ≤ 〈(Φ∗Φ)−1f, f〉 ≤ 1

A
‖f‖2, ∀ f ∈ H

Furthermore, using the first part of the proof we have:∑
γ∈Γ

|〈f, φ̃γ〉|2 = ‖Φ̃f‖2

= 〈Φ(Φ∗Φ)−1f,Φ(Φ∗Φ)−1f〉
= 〈Φ∗Φ(Φ∗Φ)−1f, (Φ∗Φ)−1f〉
= 〈f, (Φ∗Φ)−1f〉

This proves (66).
If A = B, then

〈Φ∗Φf, f〉 = A‖f‖2, ∀ f ∈ H

Thus the spectrum of Φ∗Φ is only A, and we have Φ∗Φ = AI. It follows that φ̃γ =
(Φ∗Φ)−1φγ = A−1φγ.

This theorem proves that one way to reconstruct a signal f from its frame coefficients
Φf(γ) = 〈f, φγ〉 is to use the dual frame φ̃γ; equivalently, the synthesis coefficients of f in
D = {φγ}γ∈Γ are the dual frame coefficients Φ̃f(γ) = 〈f, φ̃γ〉. If the frame is tight, then we
have the simple reconstruction formula:

f =
1

A

∑
γ∈Γ

〈f, φγ〉φγ

which mirrors the reconstruction of a signal f in an orthonormal basis, except for the factor
of A−1.
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If D = {φγ}γ∈Γ is a Riesz basis then the dictionary atoms are linearly independent, which
implies that image(Φ) = `2(Γ); therefore the dual frame D̃ = {φ̃γ}γ∈Γ is also a Riesz basis.
Inserting f = φn into (65) yields:

φn =
∑
γ∈Γ

〈φn, φ̃γ〉φγ

The linear independence of D implies that the only expansion of φn in D is the trivial
expansion φn = φn, which implies that

〈φn, φ̃γ〉 =

{
1 n = γ
0 n 6= γ

Thus the frame and dual frame are biorthogonal bases for H. Furthermore, if the Riesz basis
is normalized so that ‖φγ‖ = 1 for all γ ∈ Γ, then using the dual frame bounds (66) and the
biorthogonality we have:

1

B
=

1

B
‖φn‖2 ≤

∑
γ∈Γ

|〈φn, φ̃γ〉|2 = 1 ≤ 1

A
‖φn‖2 =

1

A

This shows that
A ≤ 1 ≤ B

for a Riesz basis with normalized atoms.

Exercise 59. Read Section 5.1.2 of A Wavelet Tour of Signal Processing.

Exercise 60. Prove that if K ∈ R with |K| ≥ 1, then

D =
{
φn(t) = e2πint/K

}
n∈Z

is a tight frame for L2[0, 1]. Compute the frame bound. Prove the result cannot hold in
general for |K| < 1 by finding a specific such K and proving D is not a frame for that K.

Exercise 61. Prove that a finite set of N vectors {φn}1≤n≤N is always a frame for the space
V defined by:

V = span{φn}1≤n≤N

Exercise 62. Let φp ∈ RN be defined as:

φp[n] = δ[(n− p) mod N ]− δ[(n− p− 1) mod N ], 0 ≤ p < N

and define V as:

V =

{
f ∈ RN :

N−1∑
n=0

f [n] = 0

}
Prove that the dictionary D = {φp}0≤p<N is a translation invariant frame for V; that is,
prove there exists some filter h ∈ RN such that (Φf)(p) = (f ~ h)(p) for all f ∈ V,
where (Φf)(p) = 〈f, φp〉 is the frame analysis operator. Compute the frame bounds. Is it a
numerically stable frame when N is large?
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6.1.3 Dual Frame Analysis and Synthesis Computations

Section 5.1.3 of A Wavelet Tour of Signal Processing.

To compress and denoise a signal f we will project the signal onto a closed subspace V ⊂ H
that is generated from the span of a subset dictionary atoms from a larger dictionary. We
thus need to study projections onto V. As is well known from linear algebra, the best linear
approximation of f ∈ H in V is the orthogonal projection of f onto V. To make clear the
setup, we let D = {φγ}γ∈Γ ⊂ H be a dictionary in H, but which is a frame only on V, i.e.,

A‖g‖2 ≤
∑
γ∈Γ

|〈g, φγ〉|2 ≤ B‖g‖2, ∀ g ∈ V

The analysis operator Φ is still defined on all of H, but it may not behave “nicely” off of V.
The next theorem shows how to compute the orthogonal projection of f ∈ H onto V with
the dual frame.

Theorem 6.6. Let D = {φγ}γ∈Γ be a frame for V ⊂ H, and D̃ = {φ̃γ}γ∈Γ its dual frame
on V. The orthogonal projection of f ∈ H onto V is

PVf =
∑
γ∈Γ

〈f, φγ〉φ̃γ =
∑
γ∈Γ

〈f, φ̃γ〉φγ (70)

Proof. To show that PV is a projection, we must show that PVg = g for all g ∈ V. But since
D is a frame for V, we have the synthesis formula given by (65) which proves that PVg = g
for all g ∈ V.

To show that PV is an orthogonal projection, we must verify that

〈f − PVf, φn〉 = 0, ∀n ∈ Γ

Note that (65) implies that
φn =

∑
γ∈Γ

〈φn, φ̃γ〉φγ
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Therefore we compute:

〈f − PVf, φn〉 = 〈f −
∑
γ∈Γ

〈f, φγ〉φ̃γ, φn〉

= 〈f, φn〉 −
∑
γ∈Γ

〈f, φγ〉〈φ̃γ, φn〉

= 〈f, φn〉 −
∑
γ∈Γ

〈f, 〈φ̃γ, φn〉∗φγ〉

= 〈f, φn −
∑
γ∈Γ

〈φ̃γ, φn〉∗φγ〉

= 〈f, φn −
∑
γ∈Γ

〈φn, φ̃γ〉φγ〉

= 〈f, φn − φn〉 = 0

Since D is a frame for a subspace V ⊂ H, Φ is only invertible on this subspace and the
definition of the pseudo-inverse is now:

Φ†Φf = f, ∀ f ∈ V and Φ†a = 0, ∀ a ∈ image(Φ)⊥

Let ΦV be the restriction of the frame analysis operator to V. The operator Φ∗ΦV is
invertible on V and we write (Φ∗ΦV)−1 as its inverse on V. One can verify that

Φ† = (Φ∗ΦV)−1Φ∗ = Φ̃∗

Let f ∈ H. Theorem 6.6 and (70) give two ways in which to compute orthogonal
projections onto V. In a dual synthesis scenario, the orthogonal projection PVf is computed
from the frame analysis coefficients with the dual frame synthesis operator:

PVf = Φ̃∗Φf =
∑
γ∈Γ

〈f, φγ〉φ̃γ (71)

If the frame D = {φγ}γ∈Γ does not depend on the signal f , then the dual frame vectors are
precomputed:

φ̃γ = (Φ∗ΦV)−1φγ

and the signal PVf is synthesized with (71).
However, in many applications the frame vectors depend on the signal f . In this case the

dual frame vectors φ̃γ cannot be computed in advance, and it is highly inefficient to compute
them directly for each new signal f . In this case, we have already computed Φf and we want
to compute PVf . We compute first:

y = Φ∗Φf =
∑
γ∈Γ

〈f, φγ〉φγ ∈ V

2



Let L be the linear operator defined as

Lh = Φ∗ΦVh, ∀h ∈ V

We then compute PVf via:

L−1y = (Φ∗ΦV)−1Φ∗Φf = Φ̃∗Φf = PVf

We have already encountered several situations which would lead to something similar to
the above scenario. For example, when we studied instantaneous frequencies we focused on
the ridge points of either the windowed Fourier transform Sf(u, ξ) or the wavelet transform
Wf(u, s). While these are not frames according to our current definition (since the index
set (u, ξ) or (u, s) is uncountable), this is something we will remedy shortly. The subspace
V then depends on the signal f since it is the subspace of H generated by the span of the
gu,ξ or the ψu,s that correspond to the ridge points of f in either the windowed Fourier or
wavelet representation. Computing PVf then synthesizes a signal f̃ from only the ridge
information of f . One can do something similar (and we will in a bit) when analyzing
signals with isolated singularities and generating V as the span of the ψu,s that correspond
to the wavelet modulus maxima. As we shall see the synthesized signal f̃ = PVf ≈ f , thus
indicating that these local maxima points carry the majority of information in such signals.

The alternate scenario is a dual analysis, in which PVf is computed as

PVf = Φ∗Φ̃f =
∑
γ∈Γ

〈f, φ̃γ〉φγ

Similarly to before, if Φ does not depend upon f , then the dual frame vectors φ̃γ can be
precomputed.

It is also possible in this case to view D = {φγ}γ∈Γ as a subset of a larger frame, which
has been obtained by solving for a sparse approximation of f in the larger frame.

When D depends on f , we again circumvent computing the dual frame directly. Let

a[γ] = Φ̃f(γ) = 〈f, φ̃γ〉

and note that
PVf = Φ∗a =

∑
γ∈Γ

a[γ]φγ

Since ΦPVf = Φf , we have that
ΦΦ∗a = Φf

Let Φ∗Im(Φ) be the restriction of Φ∗ to image(Φ). Since ΦΦ∗Im(Φ) is invertible on image(Φ), we
have

a = (ΦΦ∗Im(Φ))
−1Φf

Notice that a is obtained by computing a = L−1y, where in this case y = Φf and L =
ΦΦ∗Im(Φ).

Exercise 63. Read Section 5.1.3 of A Wavelet Tour of Signal Processing.

Exercise 64. Read Section 5.1.4 of A Wavelet Tour of Signal Processing.
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6.1.4 Translation Invariant Frames

Section 5.1.5 of A Wavelet Tour of Signal Processing.

Let {φγ}γ∈Γ ⊂ L2(Rd) be a countable family of time frequency atoms. Recall that a trans-
lation invariant dictionary is a dictionary D of the form

D = {φu,γ}u∈R, γ∈Γ

where
φu,γ(x) = φγ(x− u)

The analysis operator associated to D acts upon f ∈ L2(Rd) and is defined as

Φf(u, γ) = 〈f, φu,γ〉 = f ∗ φ̄γ(u), φ̄γ(x) = φ∗γ(−x)

Since the index set of D is Rd × Γ is not countable, it is thus not strictly speaking a frame
by the definition we have utilized up to this point. However, we can consider the energy of
the transform Φf(u, γ), which is defined as

‖Φf‖2 =
∑
γ∈Γ

‖Φf(·, γ)‖2
2 =

∑
γ∈Γ

∫
|Φf(u, γ)|2 du

If there exist 0 < A ≤ B <∞ such that

A‖f‖2
2 ≤

∑
γ∈Γ

‖Φf(·, γ)‖2
2 =

∑
γ∈Γ

‖f ∗ φ̄γ‖2
2 ≤ B‖f‖2

2 (72)

then all of the frame theory results we have studied thus far still apply. We will refer to such
dictionaries as semi-discrete frames, since their index set is the cross product of Rd and Γ,
where Γ is discrete but of course Rd is not. The next theorem shows that the semi-discrete
frame condition (72) is equivalent to a condition on the Fourier transforms of the generators
φγ.

Theorem 6.7. Let {φγ}γ∈Γ ⊂ L2(Rd) be a family of generator functions. Then there exist
0 < A ≤ B <∞ such that

A ≤
∑
γ∈Γ

|φ̂γ(ω)|2 ≤ B, for almost every ω ∈ Rd, (73)

if and only if D = {φu,γ}u∈Rd, γ∈Γ is a semi-discrete frame with frame bounds A and B. Any
family {φ̃γ}γ∈Γ that satisfies ∑

γ∈Γ

φ̂∗γ(ω)
̂̃
φγ(ω) = 1

defines a left inverse
f =

∑
γ∈Γ

Φf(·, γ) ∗ φ̃γ =
∑
γ∈Γ

f ∗ φ̄γ ∗ φ̃γ
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and are thus the generators of the dual frame. They are defined in frequency as

̂̃
φγ(ω) =

φ̂γ(ω)∑
n∈Γ |φ̂n(ω)|2

Proof. Let H : L2(Rd) → L2(Rd) be defined as Hf = f ∗ h̄ for some filter h, where h̄(x) =
h∗(−x). We first prove that H∗g = g ∗h. Indeed, using the Parseval formula (Theorem 2.12)
and the convolution formula we have:

〈g,Hf〉 =

∫
Rd
g(x)(f ∗ h̄)∗(x) dx

=
1

(2π)d

∫
Rd
ĝ(ω)f̂ ∗(ω)̂̄h∗(ω) dω

=
1

(2π)d

∫
Rd
ĝ(ω)ĥ(ω)f̂ ∗(ω) dω

=

∫
Rd
g ∗ h(x)f ∗(x) dx

= 〈g ∗ h, f〉

Now assume that D is a semi-discrete frame with frame bounds A and B, and let Φγf =
Φf(·, γ) = f ∗ φ̄γ. Since D is a semi-discrete frame, each Φγ : L2(Rd)→ L2(Rd) and by the
above computation Φ∗γg = g∗φγ. The analysis operator is Φ : L2(Rd)→ `2(Γ,L2(Rd)) which
can be written as Φf = (Φγf)γ∈Γ. Let G = (gγ)γ∈Γ ∈ `2(Γ,L2(Rd)) and now compute the
adjoint of Φ:

〈G,Φf〉 =
∑
γ∈Γ

〈gγ,Φγf〉

=
∑
γ∈Γ

〈Φ∗γgγ, f〉

=

〈∑
γ∈Γ

Φ∗γgγ, f

〉

=

〈∑
γ∈Γ

gγ ∗ φγ, f

〉

It follows that
Φ∗G =

∑
γ∈Γ

gγ ∗ φγ

and furthermore
Φ∗Φf =

∑
γ∈Γ

f ∗ φ̄γ ∗ φγ
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The semi-discrete frame condition (72) is equivalent to

A‖f‖2 ≤ ‖Φf‖2 = 〈Φ∗Φf, f〉 ≤ B‖f‖2

We can rewrite 〈Φ∗Φf, f〉:

〈Φ∗Φf, f〉 =

∫
Rd

∑
γ∈Γ

f ∗ φ̄γ ∗ φγ(x)f ∗(x) dx

=
∑
γ∈Γ

∫
Rd
f ∗ φ̄γ ∗ φγ(x)f ∗(x) dx

=
∑
γ

1

(2π)d

∫
Rd
f̂(ω)φ̂∗γ(ω)φ̂γ(ω)f̂ ∗(ω) dω

=
1

(2π)d

∫
Rd
|f̂(ω)|2

(∑
γ∈Γ

|φ̂γ(ω)|2
)
dω

Suppose by contradiction there exists E ⊂ Rd with finite but nonzero Lebesgue measure,
i.e., 0 < |E| <∞, and for which∑

γ

|φ̂γ(ω)|2 > B, ∀ω ∈ E

Let f̂(ω) = (2π)d/21E(ω). We have that ‖f̂‖2 = (2π)d|E| and thus f ∈ L2(Rd) with ‖f‖2 =
|E|. But then

〈Φ∗Φf, f〉 =
1

(2π)d

∫
Rd

(2π)d1E(ω)

(∑
γ∈Γ

|φ̂γ(ω)|2
)
dω

> B

∫
E

dω = B|E| = B‖f‖2

which contradicts 〈Φ∗Φf, f〉 ≤ B‖f‖2. A similar argument proves the lower bound, and thus
we have shown that

for a.e. ω ∈ Rd , A ≤
∑
γ∈Γ

|φ̂γ(ω)|2 ≤ B

Now assume that (73) holds. Let f ∈ L2(Rd) and multiply through by (2π)−d|f̂(ω)|2 and
integrate over Rd to obtain:

A

(2π)d

∫
Rd
|f̂(ω)|2 dω ≤ 1

(2π)d

∫
Rd
|f̂(ω)|2

∑
γ∈Γ

|φ̂γ(ω)|2 dω ≤ B

(2π)d

∫
Rd
|f̂(ω)|2 dω

which is equivalent to

A‖f‖2 ≤ 1

(2π)d

∫
Rd
|f̂(ω)|2

∑
γ∈Γ

|φ̂γ(ω)|2 dω ≤ B‖f‖2 (74)
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We rewrite the inner part:

1

(2π)d

∫
Rd
|f̂(ω)|2

∑
γ∈Γ

|φ̂γ(ω)|2 dω =
∑
γ∈Γ

1

(2π)d

∫
Rd
f̂(ω)φ̂∗γ(ω)f̂ ∗(ω)φ̂γ(ω) dω

=
∑
γ∈Γ

∫
Rd
f ∗ φ̄γ(x)(f ∗ φ̄γ)∗(x) dx

=
∑
γ∈Γ

‖f ∗ φ̄γ‖2

=
∑
γ∈Γ

‖Φf(·, γ)‖2

Plugging this into (74) proves that D is a semi-discrete frame.
Now let {φ̃γ}γ∈Γ be a family of functions that satisfies∑

γ∈Γ

φ̂∗γ(ω)
̂̃
φγ(ω) = 1 (75)

First, it is clear that such functions are defined in frequency as:

̂̃
φ(ω) =

φ̂γ(ω)∑
n∈Γ |φ̂n(ω)|2

(76)

by simply plugging (76) into the left hand side of (75) and verifying that the sum is equal
to one. Now define

g(x) =
∑
γ∈Γ

Φ(·, γ) ∗ φ̃γ(x) =
∑
γ∈Γ

f ∗ φ̄γ ∗ φ̃γ(x)

The Fourier transform of g is:

ĝ(ω) =
∑
γ∈Γ

f̂(ω)φ̂∗γ(ω)
̂̃
φγ(ω) = f̂(ω)

∑
γ∈Γ

φ̂∗γ(ω)
̂̃
φγ(ω) = f̂(ω)

It follows that g = f , which completes the proof.

Exercise 65. Read Section 5.1.5 of A Wavelet Tour of Signal Processing.

6.2 Translation Invariant Dyadic Wavelet Transform

Section 5.2 of A Wavelet Tour of Signal Processing.

Recall that a continuous wavelet transform computes

Wf(u, s) = 〈f, ψu,s〉 = f ∗ ψ̄s(u), ∀(u, s) ∈ R× (0,∞) (77)
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where
ψu,s(t) =

1√
s
ψ

(
t− u
s

)
and ψ̄s(t) =

1√
s
ψ∗
(
− t
s

)
The operator W , as defined in (77), does not define an analysis operator of a semi-discrete
frame because the scale parameter s takes values over the entire interval (0,∞), which is not
discrete.

A semi-discrete wavelet frame is generated by sampling the scale parameter s along an
exponential sequence {aj}j∈Z for some a > 1. In many applications (but not all!), we take
a = 2. In this case the generating family is {ψj}j∈Z with

ψj(t) = 2−jψ(2−jt)

and the translation invariant dictionary is given by:

D = {ψu,j}u∈R, j∈Z, ψu,j(t) = ψj(t− u) = 2−jψ(2−j(t− u))

The resulting analysis operator defines the dyadic wavelet transform:

Wf(u, j) = 〈f, ψu,j〉 = f ∗ ψ̄j(u), ψ̄j(t) = 2−jψ∗(−2−jt)

Notice that rather than normalizing the dilated wavelets by 2−j/2, which would be analogous
to the normalization s−1/2 in the continuous wavelet transform, we normalize by 2−j. This
is to simplify the following presentation. It simply means that the normalization preserves
the L1 norm of ψ as opposed to the L2 norm, that is, ‖ψj‖1 = ‖ψ‖1. Notice as well that
ψ̂j(ω) = ψ̂(2jω) with this normalization.

Applying Theorem 6.7 shows that D is a semi-discrete frame if and only if there exists
0 < A ≤ B < 0 such that

A ≤
∑
j∈Z

|ψ̂(2jω)|2 ≤ B, ∀ω ∈ R \ {0} (78)

In this case W : L2(R)→ `2(L2(R)) when the scales are restricted to s = 2j. Notice that if
ψ is a complex analytic wavelet (meaning that ψ̂(ω) = 0 for all ω ≤ 0), then it is impossible
for (78) to hold. We will come back to this in a bit. For now assume that ψ is a real valued
wavelet. The standard semi-discrete frame condition, which is equivalent to (78), is written
as:

A‖f‖2
2 ≤

∑
j∈Z

‖f ∗ ψ̄j‖2
2 ≤ B‖f‖2

2

Equation (78) shows that if the frequency axis is completely covered by dilated dyadic
wavelets, then a dyadic wavelet transform defines a complete and stable representation of
f ∈ L2(R); see Figure 32.
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Figure 32: The squared Fourier transform modulus |ψ̂(2jω)|2 of a real valued spline wavelet,
for 1 ≤ j ≤ 5 and ω ∈ [−π, π].

Remark 6.8. Recall for the continuous wavelet transform, we had the following admissibility
condition for a real valued wavelet:

Cψ =

∫ +∞

0

|ψ̂(ω)|2

ω
<∞

In fact (78) is closely related to the admissibility condition, as the following calculation shows
(let ω0 > 0):

Cψ =

∫ +∞

0

|ψ̂(ω)|2

ω
dω , (CoV: ω = 2λω0 ⇒ dω = (log 2)2λω0dλ)

=

∫
R

|ψ̂(2λω0)|2

2λω0

(log 2)2λω0 dλ

= (log 2)

∫
R
|ψ̂(2λω0)|2 dλ

Note that ω0 > 0 was arbitrary and since |ψ̂(ω)| = |ψ̂(−ω)| for any ω, in fact it holds for
any ω0 6= 0. Thus we see (78) is a discrete version of the wavelet admissibility condition.
This calculation also explains why switching to a an L1(R) normalization for the wavelet is
a good idea.

In the case of complex analytic wavelets, one option is to use a larger set of generating
wavelets given by:

{ψj,ε}j∈Z, ε∈{1,−1}, ψj,ε(t) = 2−jψ(ε2−jt)

In this case for suitably chosen wavelets it is possible for (78) to hold. However, it is
unnecessary to double the number of generating wavelets as in the above. Indeed, we can
instead replace (78) with

2A ≤
∑
j∈Z

|ψ̂(2jω)|2 +
∑
j∈Z

|ψ̂(−2jω)|2 ≤ 2B, ∀ω ∈ R \ {0} (79)
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which, due to the wavelet ψ being complex analytic, is equivalent to

2A ≤
∑
j∈Z

|ψ̂(2jω)|2 ≤ 2B, ∀ω ∈ (0,∞)

Let f ∈ L2(R) be real valued and let fa be the analytic part of f . Recall that f̂a(ω) = 2f̂(ω)
for ω > 0 and 2‖f‖2

2 = ‖fa‖2
2. Then:∑

j∈Z

‖f ∗ ψ̄j‖2
2 =

∑
j∈Z

∫
R
|f ∗ ψ̄j(t)|2 dt

=
1

2π

∑
j∈Z

∫
R
|f̂(ω)|2|ψ̂(2jω)|2 dω

=
1

2π

∫ +∞

0

|f̂(ω)|2
∑
j∈Z

|ψ̂(2jω)|2 dω

=
1

4

1

2π

∫ +∞

0

|f̂a(ω)|2
∑
j∈Z

|ψ̂(2jω)|2 dω

≥ A

2

1

2π

∫ +∞

0

|f̂a(ω)|2 dω

=
A

2
‖fa‖2

2

= A‖f‖2
2

A similar argument shows that
∑

j ‖f ∗ ψ̄j‖2
2 ≤ B‖f‖2

2. Therefore the dyadic wavelet trans-
form with a complex analytic wavelet defines a semi-discrete frame with frame bounds A
and B if (79) holds.

Now suppose we only want to compute the dyadic wavelet transform up to a maximum
scale 2j for j < J . The lost low frequency information is captured by a single scaling function
(or low pass filter) whose Fourier transform is concentrated around the origin. Let φ ∈ L2(R)
be a low pass filter and let φJ(t) = 2−Jφ(2−Jt) and let ψ be a real valued wavelet. The dyadic
wavelet transform in this case is defined as:

WJf = {f ∗ φ̄J(u), f ∗ ψ̄j(u)}u∈R, j<J

The operator WJ is the analysis operator of a semi-discrete frame if

A ≤ |φ̂(2Jω)|2 +
∑
j<J

|ψ̂(2jω)|2 ≤ B

If the family {ψj}j∈Z are the generators of a semi-discrete frame, meaning that (78) holds,
then one can define φ in frequency as:

|φ̂(ω)|2 =

{
(A+B)/2, ω = 0∑

j≥0 |ψ̂(2jω)|2, ω 6= 0

10



Figure 33: The dyadic wavelet transform WJf computed with J = −2 and −7 ≤ j ≤ −3.
The top curve is f(t), the next five curves are f ∗ ψ̄j(u), and the bottom curve is f ∗ φ̄J .
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Figure 33 plots the dyadic wavelet transform WJf for the signal f from Figure 13.
A dual wavelet for a semi-discrete dyadic wavelet frame (without scaling function) is

computed in frequency as: ̂̃
ψ(ω) =

ψ̂(ω)∑
k∈Z |ψ̂(2kω)|2

and the generators of the dual semi-discrete dictionary are given by the dilations of ψ̃, namely
{ψ̃j}j∈Z. From this definition it follows that the Fourier transform of ψ̃j satisfies:

̂̃
ψj(ω) =

̂̃
ψ(2jω) =

ψ̂(2jω)∑
k∈Z |ψ̂(2j+kω)|2

=
ψ̂(2jω)∑

k∈Z |ψ̂(2kω)|2

We thus have ∑
j∈Z

ψ̂∗j (ω)
̂̃
ψj(ω) =

∑
j∈Z

ψ̂∗(2jω)
̂̃
ψ(2jω) = 1, ∀ω ∈ R \ {0}

and so by Theorem 6.7 the following reconstruction formula holds:

f(t) =
∑
j∈Z

f ∗ ψ̄j ∗ ψ̃j(t)

Things are simplified when the semi-discrete dyadic wavelet frame is tight. In this case

ψ̃u,j(t) =
1

A
ψu,j(t) =

1

A
2−jψ(2−j(t− u))

and signal synthesis is computed as:

f(t) =
1

A

∑
j∈Z

f ∗ ψ̄j ∗ ψj(t)

Notice that we must then have∑
j∈Z

|ψ̂(2jω)|2 = A , ∀ω ∈ R \ {0}

if the wavelet ψ is real valued (with a similar condition for complex analytic wavelets). This
is a Littlewood-Paley type condition, and implies the Fourier transforms of the dilations of
the wavelet ψ evenly cover the frequency axis.

Exercise 66. Read Section 5.2 of A Wavelet Tour of Signal Processing.

Exercise 67. Read Section 5.3 of A Wavelet Tour of Signal Processing.

Exercise 68. Read Section 5.4 of A Wavelet Tour of Signal Processing.
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Exercise 69. Let h be a filter with ĥ(0) =
√

2 and let φ ∈ L2(R) be a low pass filter with
the following Fourier transform:

φ̂(ω) =
1√
2
ĥ(ω/2)φ̂(ω/2)

Let g be a filter with ĝ(0) = 0 and let ψ be a wavelet with Fourier transform:

ψ̂(ω) =
1√
2
ĝ(ω/2)φ̂(ω/2)

Prove that if there exist 0 < A ≤ B <∞ such that

A(2− |ĥ(ω)|2) ≤ |ĝ(ω)|2 ≤ B(2− |ĥ(ω)|2)

then the family {ψj}j∈Z are the generators of a semi-discrete frame.

Exercise 70. Let X = (X(t))t∈R be a second order stationary stochastic process with
continuous sample paths. Let ψ be a real valued, continuous, compactly supported wavelet
for which ∑

j∈Z

|ψ̂(2jω)|2 = 1 , ∀ω 6= 0

Prove: ∑
j∈Z

E
[
|X ∗ ψj(t)|2

]
= VarX(0) = E[(X(0)−mX)2] , ∀ t ∈ R

Exercise 71. This exercise is about representations of signals f that are invariant to trans-
lation of f .

(a) Let f ∈ L2(R) and let φ ∈ L1(R) ∩ C1(R) be a low pass filter with φ′ ∈ L1(R). Let
fu(t) = f(t − u) be the translation of f by u. Prove there exists a universal constant
C > 0 such that:

‖f ∗ φJ − fu ∗ φJ‖2 ≤ C2−J |u|‖φ′‖1‖f‖2

(b) Let φ be as in part (a) and suppose ψ ∈ L1(R) is a wavelet for which

|φ̂(2Jω)|2 +
∑
j<J

|ψ̂(2jω)|2 = 1 , ∀ω ∈ R

Part (a) shows that f ∗ φJ is a representation of f that is invariant to translations
of f so long as |u| � 2J . However, f ∗ φJ only keeps the low frequencies of f . A
representation that keeps more information from f is:

SJf = {f ∗ φJ , |f ∗ ψj| ∗ φJ : j < J} ∈ `2(L2(R))

Prove this representation is also translation invariant in the same sense, meaning there
exists a constant C > 0 such that:

‖SJf − SJfu‖`2(L2(R)) ≤ C2−J |u|‖φ′‖1‖f‖2
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Exercise 72. THIS EXERCISE IS OPTIONAL! JUST IF YOU WANT AN AD-
DITIONAL CHALLENGE. The Zak transform maps any f ∈ L2(R) to:

Zf(u, ξ) =
∑
l∈Z

e2πilξf(u− l)

(a) Prove that Z : L2(R)→ L2[0, 1]2 is a unitary operator, i.e. show that∫
R
f(t)g∗(t) dt =

∫ 1

0

∫ 1

0

Zf(u, ξ)Zg∗(u, ξ) du dξ

One approach is the following: Let g(t) = 1[0,1](t) and consider

B = {gn,k}(n,k)∈Z2 , gn,k(t) = g(t− n)e2πikt

Verify that B is an orthonormal basis for L2(R), and then show that {Zgn,k}(n,k)∈Z2 is
an orthonormal basis for L2[0, 1]2.

(b) Prove that the inverse Zak transform is defined by:

Z−1h(u) =

∫ 1

0

h(u, ξ) dξ, ∀h ∈ L2[0, 1]2

(c) Now let g ∈ L2(R) be arbitrary and consider

D = {gn,k}(n,k)∈Z2 , gn,k(t) = g(t− n)e2πikt

Prove that D is a frame for L2(R) with frame bounds 0 < A ≤ B <∞ if and only if

A ≤ |Zg(u, ξ)|2 ≤ B, ∀ (u, ξ) ∈ [0, 1]2 (80)

(d) Prove that if (80) holds, then the dual window g̃ of the dual frame D̃ is defined by

Zg̃(u, ξ) =
1

Zg∗(u, ξ)
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6.2.1 Dyadic Maxima Representation

Section 6.2.2 of A Wavelet Tour of Signal Processing

Let us now return to the analysis of pointwise singularities of signals f via the decay of
Wf(u, s) as s → 0. Let ψ be a real valued wavelet, and recall that a wavelet modulus
maxima is defined as a point (u0, s0) such that |Wf(u, s0)| is locally maximum at u = u0.

All of the results regarding wavelet coefficient decay and the pointwise regularity of f(t)
(including, in particular, Theorems 5.5, 5.7, and 5.8) hold for dyadic wavelet semi-discrete
frames by restricting s = 2j for j ∈ Z. Let (u0, j) be a modulus maxima point of Wf(u, j),
meaning that

∂Wf

∂u
(u0, j) = 0 (81)

Since Wf(u, j) = f ∗ ψ̄j(u), ψ̄j(t) = 2−jψ(−2−jt) and

d

dt
ψ̄j(t) = −2−j2−jψ′(−2−jt) = −2−jψ′j(t)

equation (81) is equivalent to
f ∗ ψ′j(u0) = 0

Figure 34 shows the dyadic wavelet transform of a signal and the corresponding wavelet
modulus maxima.

Let Λ denote the wavelet modulus maxima of f :

Λ = {(u, j) ∈ R× Z : f ∗ ψ′j(u) = 0}

Recall that the dictionary D of a dyadic wavelet transform is:

D = {ψu,j}(u,j)∈R×Z

The set Λ defines a sub-dictionary of D:

DΛ = {ψu,j}(u,j)∈Λ

Furthermore, the completion of the span of DΛ defines a closed subspace VΛ of L2(R):

VΛ = spanDΛ

1



Figure 34: (a) The signal f(t). (b) Dyadic wavelet transform computed with a wavelet
ψ = −θ′. (c) Modulus maxima of the dyadic wavelet transform.
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We can therefore project f onto VΛ. Doing so amounts to computing an approximation
fΛ of f which is the signal synthesized from only the wavelet modulus maxima of f . It is
computed with a dual synthesis as:

fΛ = PVΛ
f =

∑
(u,j)∈Λ

〈f, ψu,j〉ψ̃u,j

For general dyadic wavelets, fΛ 6= f . However, signals with the same modulus maxima differ
from each other by small amplitude errors introducing no oscillations, so in numerical experi-
ments fΛ ≈ f . If f is band-limited (meaning it has a compactly supported Fourier transform)
and ψ is as well, then the wavelet modulus maxima define a complete representation of f
and in this case fΛ = f .

Figure 35 computes the projection fΛ for the signal first introduced in Figure 34. The
signal is not bandlimited, so the reconstruction is not perfect. However, Figure 35(b) shows
that the approximation is quite good, and the relative error is approximately 2.5%. Figure 35
reconstructs the signal using only the top 50% of the wavelet modulus maxima coefficients.
The sharpest signal transitions have been preserved, since they have the largest amplitude
responses, however small texture variations are removed since the wavelet modulus maxima
there have relatively small amplitudes. The resulting signal appears to be piecewise regular.
In either case, we have achieve a lossy compression of f in which there is a large compression
and the loss is not too large.

Exercise 73. Read Section 6.2.2 of A Wavelet Tour of Signal Processing.

6.3 Multiscale Directional Frames for Images

Section 5.5 of A Wavelet Tour of Signal Processing.

6.3.1 Directional Wavelet Frames

Section 5.5.1 of A Wavelet Tour of Signal Processing.

We now consider two dimensional wavelet semi-discrete frames for image analysis. Such
semi-discrete frames are constructed with wavelets that have directional sensitivity, providing
information on the direction of sharp transitions such as edges and textures.

Let x = (x1, x2) ∈ R2. A directional wavelet ψα(x) of angle α ∈ [0, 2π) is a wavelet
having p directional vanishing moments along any one dimensional line of direction α+ π/2
in the plane but does not have directional vanishing moments along the direction α. The
former condition means that:∫

R
ψα(ρ cosα− u sinα, ρ sinα + u cosα)uk du = 0, ∀ ρ ∈ R, 0 ≤ k < p

Such a wavelet oscillates in the direction α + π/2 but not in the direction α.

3



Figure 35: (a) The signal f(t). (b) Signal approximation fΛ(t) using the dyadic wavelet
modulus maxima shown in Figure 34. (c) Approximation recovered using only the largest
50% of the wavelet modulus maxima.

4



Let Θ ⊂ [0, π) denote the set of angles α. Typically Θ is a uniform sampling:

Θ = {α = 2πk/K : 0 ≤ k < K}

The generators of a translation invariant dictionary are the dyadic dilations of each direc-
tional wavelet:

{ψj,α}j∈Z, α∈Θ, ψj,α(x) = 2−2jψα(2−jx)

Often the directional wavelets ψα are obtained by rotating a single mother wavelet ψ; we will
come back to this shortly when we define two dimensional Gabor and Morlet wavelets. For
real valued directional wavelets, Theorem 6.7 proves that the generating wavelets generate
a semi-discrete frame if and only if there exists 0 < A ≤ B <∞ such that

A ≤
∑
j∈Z

∑
α∈Θ

|ψ̂α(2jω)|2 ≤ B, ∀ω ∈ R2 \ {(0, 0)}

If the generating wavelets ψα are complex valued analytic wavelets, then they generate a
semi-discrete frame if and only if

2A ≤
∑
j∈Z

∑
α∈Θ

|ψ̂α(2jω)|2 +
∑
j∈Z

∑
α∈Θ

|ψ̂α(−2jω)|2 ≤ 2B, ∀ω ∈ R2 \ {(0, 0)} (82)

When the above semi-discrete frame conditions holds, the dyadic directional wavelet
transform is a map W : L2(R2)→ `2(L2(R2)) defined as:

Wf = {f ∗ ψ̄j,α(u) : j ∈ Z, α ∈ Θ, u ∈ R2}, ψ̄j,α(x) = ψ∗j,α(−x)

A wavelet ψu,j,α(x) = ψj,α(x− u) has support dilated by 2j, located in a neighborhood of u
and oscillates in the direction α + π/2. If f(x) is constant over the support of ψj,α(x − u)
along lines of direction α + π/2, then f ∗ ψ̄j,α(u) = 0 because of its directional vanishing
moments. In particular, the wavelet coefficient vanishes in the neighborhood of an edge
having a tangent in the direction of α+π/2. If the edge angle deviates from α+π/2, then it
produces large amplitude coefficients, with a maximum typically when the edge has direction
α. Figure 36 illustrates the idea.

Two dimensional Gabor wavelets are directional wavelets generated from a single complex
valued mother wavelet. The mother wavelet is defined as:

ψ(x) = gσ(x)eiξ·x

where ξ = (ξ1, ξ2) ∈ R2 is the central frequency of ψ and g(x) is a Gaussian, which we take
as

gσ(x) =
1

2πσ2
e−|x|

2/2σ2

The mother Gabor wavelet oscillates along the angle arccos(ξ1/|ξ|), and thus in the more
general language of directional wavelets it has angle α = arccos(ξ1/|ξ|) − π/2. The Fourier
transform of ψ is

ψ̂(ω) = e−σ
2|ω−ξ|2/2
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Figure 36: A cartoon image of a disk, with a regular edge. When the wavelet direction α
is orthogonal to the tangent of the edge, the coefficients vanish as indicated by the black
wavelet response (α2). When the wavelet direction α aligns with the tangent of the curve
(as on the left with α1), the wavelet coefficients have large amplitude. When the tangent
of the curve is not aligned with the wavelet, but is not orthogonal either (as in α3 and α′3),
wavelet coefficients may have non-negligible amplitude but generally not as large as the α1

coefficients.

For appropriate choices of σ ∈ R and ξ ∈ R2 the wavelet has nearly zero average and is
almost analytic. The generators of a Gabor wavelet semi-discrete frame are obtained from
dilations and rotations of the mother wavelet:

ψj,θ(x) = 2−2jψ(2−jR−1
θ x), j ∈ Z, θ ∈ Θ

where Rθ is the two dimensional rotation matrix by the angle θ,

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
A simple computation shows that

ψj,θ(x) = g2jσ(x)ei2
−jRθξ·x

Thus ψj,θ changes the essential support of ψ from a ball of radius σ to a ball of radius 2jσ,
the direction of oscillation is rotated by θ radians, and the magnitude of the frequency of
this oscillation is now 2−j|ξ|. In frequency we have:

ψ̂j,θ(ω) = ψ̂(2jR−1
θ ω) = e−(2jσ)2|ω−2−jRθξ|2/2

Thus the essential support of ψ̂j,θ(ω) is a ball of radius (2jσ)−1 centered at 2−jRθξ. These
frequency supports will cover the upper half plane for appropriate choices of K (the number
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Figure 37: Frequency supports of the two dimensional oriented Gabor wavelets. Scales 2j are
indicated with different colors. The central green ball corresponds to the frequency support
of a two dimensional scaling function.

of angles θ) and ξ; reflections will then cover the lower half plane, and so (82) will be satisfied.
Figure 37 illustrates this frequency covering.

As in one dimension, Gabor wavelets can be amended to have precisely zero average:

ψ(x) = gσ(x)(eiξ·x − C), C chosen so that
∫
R2

ψ(x) dx = 0

which gives a directional Morlet wavelet. Figure 38 plots the real part of a Morlet wavelet
at different scales and orientations; Figure 39 plots the imaginary part; and Figure 40 plots
their Fourier transforms.

A dyadic Gabor/Morlet wavelet transform computes:

Wf = {f ∗ ψj,θ(u) : j ∈ Z, θ ∈ Θ, u ∈ R2}

Figure 41 shows the result of computing the dyadic Gabor wavelet transform of an image
consisting of one texture embedded in another texture. The middle texture is relatively
smooth along vertical lines, but has significant variations in the horizontal direction. It
results that a Gabor wavelet transform with two directional angles θ = 0 and θ = π/2
will have large magnitude responses for θ = 0, and negligible response for θ = π/2. The
outside texture, on the other hand, has the most variation along the angle α = π/4. The
Gabor wavelet coefficients along the directions θ = 0, π/2 should be negligible for this outside
texture, and indeed they are.

Figure 42 computes the Morlet wavelet transform of a black and white image of a but-
terfly, where the directional edge detection properties of the transform are exhibited, partic-
ularly in the wing of the butterfly.

As a point of comparison, we can define a non-directional wavelet ψ(x) as the Laplacian
of a Gaussian:

ψ(x) = −(∆g)(x) , g(x) =
1

2πσ2
e−|x|

2/2σ2
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Figure 38: Real part of Morlet wavelets. Increasing scale left to right, and increasing angle
in [0, π) from top to bottom. Green is positive, pink is negative, and white is zero.
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Figure 39: Imaginary part of Morlet wavelets. Increasing scale left to right, and increasing
angle in [0, π) from top to bottom. Green is positive, pink is negative, and white is zero.
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Figure 40: Fourier transforms of Morlet wavelets. Increasing scale left to right, and increasing
angle in [0, π) from top to bottom. Green is positive, pink is negative, and white is zero.
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Figure 41: Top: Image of one texture embedded in another texture. Bottom: The magnitude
of the Gabor wavelet transform |Wf(u, j, θ)| = |f ∗ ψj,θ(u)| for j = −4,−5 and θ = 0, π/2.
Images taken from Figure 5.9 of [1].

Note we have
ψ̂(ω) = |ω|2ĝ(ω) = |ω|2e−σ2|ω|2/2

and so ψ is indeed a wavelet, and is radially symmetric, meaning it has no directionality.
The wavelet transform for this wavelet computes:

Wf = {f ∗ ψj(u) : j ∈ Z , u ∈ R2}

Even though this wavelet has no directionality, it can still pick up edges at small scales and
meso- and macroscopic patterns at larger scales, agnostic of the direction. See Figure 43 for
pictures and more details.

Exercise 74. Read Section 5.5.1 of A Wavelet Tour of Signal Processing.

Exercise 75. Read Section 5.5.2 of A Wavelet Tour of Signal Processing.

6.4 Multiscale Edge Detection

Section 6.3 of A Wavelet Tour of Signal Processing.

6.4.1 Wavelet Maxima for Images

Section 6.3.1 of A Wavelet Tour of Signal Processing.

Taken directly from [1]: Image edges are often important for pattern recognition. This is
clearly illustrated by our visual ability to recognize an object from a drawing that gives a
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(a) Butterfly

(b) Modulus of Morlet wavelet coefficients, |f ∗ ψj,θ(u)|.

Figure 42: (a) Black and white image of a butterfly. (b) Modulus of the Morlet wavelet
coefficients, with increasing scale from left to right and increasing angle from top to bottom.
Small wavelet coefficients have been set to zero to better illustrate the large amplitude
coefficients. 12



Figure 43: Non-directional wavelet transform based upon ψ(x) = −(∆g)(x), for g(x) a
Gaussian. Scale increases from left to right; green is positive, pink is negative, white is
zero in the first two rows. In the last row, grey/black is positive, white is zero. Top row:
The Fourier transforms ψ̂j(ω), which are like donuts. Middle row: The wavelets ψj(x),
which oscillate radially out from the origin. Bottom row: The absolute value of the wavelet
coefficients, |f ∗ψj(u)|, for the butterfly image from Figure 42(a). Notice at small scales the
wavelet still detects edges, but agnostic to the direction.
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rough outline of contours. But, what is an edge? It could be defined as points where the
image intensity has sharp transitions. A closer look shows that this definition is often not
satisfactory. Image textures do have sharp intensity variations that are often not considered
as edges. When looking at a brick wall, we may decide that the edges are the contours of the
wall whereas the bricks define a texture. Alternatively, we may include the contours of each
brick in the set of edges and consider the irregular surface of each brick as a texture. The
discrimination of edges versus textures depends on the scale of analysis.

Figure 44 displays an image of bricks form the Brodatz image database.

Figure 44: Bricks

Let f : R2 → R be a two dimensional signal, such as an image. A Canny edge detection
algorithm detects points of sharp variation in f by calculating the norm of the gradient
vector of f . Recall the gradient of f is:

∇f(x) =

(
∂f

∂x1

(x),
∂f

∂x2

(x)

)
Let ~n = (cos β, sin β) be a unit vector in R2. The directional derivative of f in the direction
~n is defined as:

∂f

∂~n
(x) = ∇f(x) · ~n =

∂f

∂x1

(x) cos β +
∂f

∂x2

(x) sin β

The absolute value of ∂f/∂~n is maximum if ~n is colinear to ∇f . Since ∂f/∂~n(x) will be
maximum in the direction of most change around x, this shows that the gradient ∇f(x)
points in the direction of the most rapid increase around the point x ∈ R2; see Figure 45 for
an illustration. The magnitude of the variation at x (or edge strength) is given by the norm
of the gradient:

|∇f(x)| =

√(
∂f

∂x1

(x)

)2

+

(
∂f

∂x2

(x)

)2

Additionally the direction of the gradient is given by:

Af(x) =

 tan−1
(
∂f/∂x2(x)
∂f/∂x1(x)

)
∂f
∂x1

(x) ≥ 0

π + tan−1
(
∂f/∂x2(x)
∂f/∂x1(x)

)
∂f
∂x1

(x) < 0
(83)
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A point y ∈ R2 is defined as an edge if |∇f(x)| is locally maximum at x = y. Figure 46
shows the performance of the Canny edge detector (a refined version of it) on a color image.

Figure 45: Illustration of the gradient vector for simple images.

A multiscale version of the Canny edge detector is implemented by smoothing the image
with a convolution kernel θ(x) that is dilated at different scales. This is computed with two
wavelets that are partial derivatives of θ:

ψ1 = − ∂θ

∂x1

, ψ2 = − ∂θ

∂x2

These wavelets are dilated at the scales 2j for j ∈ Z:

ψj,k(x) = 2−2jψk(2
−jx)

and the dyadic wavelet transform computes:

Wf = {f ∗ ψ̄j,k(u) : j ∈ Z, k = 1, 2, u ∈ R2}, ψ̄j,k(x) = ψj,k(−x)

We write Wf(u, j) as

Wf(u, j) =

(
f ∗ ψ̄j,1(u)
f ∗ ψ̄j,2(u)

)
and we think of it as two-dimensional vector valued function, Wf(u, j) ∈ R2. The wavelets
ψj,1 measure variations in the horizontal direction at the scale 2j, while the wavelets ψj,2
measure variations in the vertical direction at the scale 2j.

Denote
θj(x) = 2−2jθ(2−jx), θ̄j(x) = θj(−x)

Figure 46: The result of the Canny edge detector applied to the image on the left. Taken
from https://en.wikipedia.org/wiki/Canny_edge_detector
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The dyadic wavelets can be written as:

ψ̄j,k = 2j
∂θ̄j
∂xk

It follows that
f ∗ ψ̄j,k(u) = 2j

∂

∂uk
(f ∗ θ̄j)(u)

and so
Wf(u, j) =

(
f ∗ ψ̄j,1(u)
f ∗ ψ̄j,2(u)

)
= 2j∇(f ∗ θ̄j)(u)

Therefore Wf(u, j) is proportional (up to a factor 2j) to the gradient of the smooth version
of f at the scale 2j. The norm of Wf(u, j), defined as:

|Wf(u, j)| =
√
|f ∗ ψ̄j,1(u)|2 + |f ∗ ψ̄j,2(u)|2

is thus proportional to |∇(f ∗ θ̄j)(u)| as well. We can also compute the angle AWf(u, j) of
Wf(u, j) using the definition (83).

The unit vector
~nj(u) = (cosAWf(u, j), sinAWf(u, j))

is colinear to∇(f ∗θ̄j)(u). An edge point at the scale 2j is a point v ∈ R2 such that |Wf(u, j)|
is locally maximum at at u = v. These points are two dimensional wavelet modulus maxima.
Individual wavelet modulus maxima are chained together to form a maxima curve that follows
an edge.

Figure 47 computes the Canny dyadic wavelet transform of image of a disc. The wavelet
modulus maxima curves are along the boundary of the disc.

As in 1D the decay of the 2D Canny dyadic wavelet coefficients depends upon the local
regularity of f . Let 0 ≤ α ≤ 1 denote the Lipschitz regularity. A function f : R2 → R is
Lipschitz α at v ∈ R2 if there exists K > 0 such that for all x ∈ R2,

|f(x)− f(v)| ≤ K|x− v|α

where |x| is the norm of x ∈ R2. As in one dimension, the local Lipschitz regularity of
f is related to the asymptotic decay of Wf(u, j). Indeed, this regularity is controlled by
|Wf(u, j)|. Let Ω ⊂ R2 be a bounded domain. One can prove that f is uniformly Lipschitz
α inside Ω if and only if there exists A > 0 such that

|Wf(u, j)| ≤ A2jα, ∀u ∈ Ω

Also analogously to the 1D setting, we can synthesize high fidelity approximations to
images using only their wavelet modulus maxima. Similarly to before, let Λ denote the set
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Figure 47: Top image: The disc. (a) Horizontal wavelet transform: f∗ψ̄j,1(u) for −6 ≤ j ≤ 0.
(b) Vertical wavelet transform: f ∗ ψ̄j,2(u) for −6 ≤ j ≤ 0. (c) Norm of wavelet coefficients
|Wf(u, j)|. (d) Angles AWf(u, j) where |Wf(u, j)| 6= 0. (e) The wavelet modulus maxima
curves.
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of wavelet modulus maxima of f using the Canny dyadic wavelet transform. The synthesized
image is computed using the dual synthesis:

fΛ =
∑

(u,j)∈Λ

∑
k=1,2

〈f, ψu,j,k〉ψ̃u,j,k

One can also de-noise images by thresholding wavelet modulus maxima. Suppose that
we have only a noisy version of f , modeled as

f̃(x) = f(x) + ε(x), ε(x) ∼ N (0, σ2)

where ε(x) is sampled independently and identically from the normal distribution; ε is re-
ferred to as white noise. The wavelet coefficients of f̃ are:

Wf̃ = Wf +Wε

At the large scales the averaging by θ̄j kills much of Wε since ε has zero average. However,
at small scales, the wavelets respond against ε and Wε masks Wf . The image can be de-
noised by thresholding the wavelet coefficients Wf̃ , which results in a “cartoon” version of
the original image if the variance σ2 of the noise is not too large; Figure 48 illustrates the
idea.

Exercise 76. Read Section 6.3 of A Wavelet Tour of Signal Processing.

Exercise 77. OPTIONAL Using your code from previous exercises compute the dyadic
wavelet transform of the signal in Figure 13. Compute the wavelet modulus maxima as well.
Implement a dual synthesis projection (however you like) and compute fΛ, i.e., the signal
synthesized from only the wavelet modulus maxima coefficients. Threshold the wavelet
modulus maxima coefficients and synthesize a signal only from the largest ones. Turn in
plots of the wavelet coefficients, the wavelet modulus maxima, and the synthesized signals.
Explain your results.

Exercise 78. OPTIONAL LetK ∈ N withK ≥ 2 and define ~nk = (cos(2πk/K), sin(2πk/K)) ∈
R2.

(a) Prove that D = {~nk : 0 ≤ k < K} is a tight frame of K vectors in R2 and that for any
ω ∈ R2, it satisfies

K−1∑
k=0

|ω · ~nk|2 =
K|ω|2

2

(b) Let

ψk =
∂θ

∂~nk

be the directional derivative of θ(x) in the direction ~nk. Define dilations of ψk as:

ψj,k(x) = 2−2jψk(2
−jx), j ∈ Z
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Figure 48: (a) Noisy peppers image. (b) Restored peppers image from the thresholding the
maxima curves shown in (d). (c) The wavelet modulus maxima points of the noisy image
for scales −7 ≤ j ≤ −5. (d) The thresholded wavelet modulus maxima.
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If θ(x) is rotationally invariant (i.e., θ(x) depends only on |x|), then prove that D =
{ψj,k : j ∈ Z, 0 ≤ k < K} are the generators of translation invariant semi-discrete
frame if and only if

2A

K
≤
∑
j∈Z

22j|ω|2|θ̂(2jω)|2 ≤ 2B

K
, a.e. ω ∈ R2

Exercise 79. OPTIONAL In this problem you will compute the wavelet transform of two
dimensional textures.

(a) Implement a dyadic 2D Morlet wavelet transform. Visualize your wavelets and their
Fourier transforms, as in the plots posted in the #in-class channel of the course Slack,
and turn these visualizations in.

(b) Take an image of your choice, and compute the dyadic Morlet wavelet transform of
the image. Turn in plots of the real and imaginary parts of the wavelet coefficients for
each (j, θ), and the modulus of the wavelet coefficients for each (j, θ). Do you see the
directional responses at different scales?
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