

Lecture 20: Time-Frequency Analysis of Stationary Processes

March 26, 2020

Lecturer: Matthew Hirn

Definition 5.20. The power spectral density of a second order stationary process X is the Fourier transform of $R_X(\tau)$, that is, $\widehat{R}_X(\omega)$.

For a stationary process X , the function $R_X(\tau) = \text{Cov}_X(0, \tau)$ measures the variability of random fluctuations of X over time. The power spectral density organizes the total variability of X over all times into different frequency components. A time frequency transforms of a stationary process allow us to measure the variability of X within time-frequency Heisenberg boxes. For example, the wavelet coefficients of X define a family of new stochastic processes $X * \psi_s$, indexed by the scale parameter $s > 0$, which are defined as

$$WX(u, s) = X * \psi_s(u) = \int_{\mathbb{R}} X(t) \psi_s(u - t) dt$$

We assume $\psi_s(t)$ is continuous, real valued, and compactly supported. Note the integral of a stochastic process with continuous sample paths times a continuous deterministic function $f(t)$, over a finite integral, is a random variable defined using the Riemann integral:

$$\int_a^b X(t) f(t) dt = \lim_{n \rightarrow \infty} \sum_{i=0}^{n-1} X(t_i^n) f(t_i^n) (t_{i+1}^n - t_i^n)$$

where $a = t_0^n < t_1^n < \dots < t_{n-1}^n < t_n^n = b$ for all n , and $\delta_n = \max_{0 \leq i \leq n-1} |t_{i+1} - t_i| \rightarrow 0$ as $n \rightarrow \infty$. The new stochastic process $X * \psi_s = (X * \psi_s(u))_{u \in \mathbb{R}}$ retains only the fluctuations of X at the scale s , for each time u ; smaller and larger scale fluctuations are eliminated because the wavelet ψ_s has a frequency support essentially supported in a frequency band determined by the scale s . The next proposition encodes this statement more precisely.

Theorem 5.21. *Let X be a second order stationary process with continuous sample paths and with mean zero, i.e., $\mathbb{E}[X] = 0$, and let ψ be a continuous real valued wavelet with compact support. Then $X * \psi_s$ is a stationary process for each $s > 0$ and:*

$$\widehat{R}_{X * \psi_s}(\omega) = \widehat{R}_X(\omega) |\widehat{\psi}_s(\omega)|^2 = s |\widehat{\psi}(s\omega)|^2 \widehat{R}_X(\omega) \quad (52)$$

Proof. The fact that $X * \psi_s$ is stationary is straightforward. We also note that since $\mathbb{E}[X] = 0$, we also have $\mathbb{E}[X * \psi_s] = 0$ for each $s > 0$. Thirdly, if $R_X \in \mathbf{L}^1(\mathbb{R})$ then $R_{X * \psi_s} \in \mathbf{L}^1(\mathbb{R})$;

indeed:

$$\begin{aligned}
\int_{\mathbb{R}} |R_{X*\psi_s}(\tau)| d\tau &= \int_{\mathbb{R}} |\mathbb{E}[X * \psi_s(0)X * \psi_s(\tau)]| d\tau \\
&= \int_{\mathbb{R}} \left| \mathbb{E} \left[\int_{\mathbb{R}} X(u)\psi_s(-u) du \cdot \int_{\mathbb{R}} X(v)\psi_s(\tau-v) dv \right] \right| d\tau \\
&= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} \int_{\mathbb{R}} \mathbb{E}[X(u)X(v)]\psi_s(-u)\psi_s(\tau-v) du dv \right| d\tau \\
&= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} \int_{\mathbb{R}} R_X(u-v)\psi_s(-u)\psi_s(\tau-v) du dv \right| d\tau \quad (\text{CoV: } t = u - v) \\
&= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} \int_{\mathbb{R}} R_X(t)\psi_s(-(t+v))\psi_s(\tau-v) dt dv \right| d\tau \\
&= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} \psi_s(\tau-v) \int_{\mathbb{R}} R_X(t)\psi_s(-v-t) dt dv \right| d\tau \\
&= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} \psi_s(\tau-v) R_X * \psi_s(-v) dv \right| d\tau \\
&\leq \int_{\mathbb{R}} \int_{\mathbb{R}} |\psi_s(\tau-v) R_X * \psi_s(-v)| dv d\tau \\
&= \int_{\mathbb{R}} |R_X * \psi_s(-v)| \int_{\mathbb{R}} |\psi_s(\tau-v)| d\tau dv \\
&= \|\psi_s\|_1 \|R_X * \psi_s\|_1 \\
&\leq \|R_X\|_1 \|\psi_s\|_1^2
\end{aligned}$$

Since ψ is continuous and compactly supported, it is in $\mathbf{L}^1(\mathbb{R})$ and so the bound is finite, and $R_{X*\psi_s} \in \mathbf{L}^1(\mathbb{R})$.

Now let us prove (52). Many of the steps are the same as above.

$$\begin{aligned}
\widehat{R}_{X*\psi_s}(\omega) &= \int_{\mathbb{R}} R_{X*\psi_s}(\tau) e^{-i\omega\tau} d\tau \\
&= \int_{\mathbb{R}} \mathbb{E}[X * \psi_s(0) X * \psi_s(\tau)] e^{-i\omega\tau} d\tau \\
&= \int_{\mathbb{R}} \mathbb{E} \left[\int_{\mathbb{R}} X(u) \psi_s(-u) du \cdot \int_{\mathbb{R}} X(v) \psi_s(\tau - v) dv \right] e^{-i\omega\tau} d\tau \\
&= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \int_{\mathbb{R}} \mathbb{E}[X(u) X(v)] \psi_s(-u) \psi_s(\tau - v) du dv \right] e^{-i\omega\tau} d\tau \\
&= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \int_{\mathbb{R}} R_X(u - v) \psi_s(-u) \psi_s(\tau - v) du dv \right] e^{-i\omega\tau} d\tau \quad (\text{CoV: } t = u - v) \\
&= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \int_{\mathbb{R}} R_X(t) \psi_s(-(t + v)) \psi_s(\tau - v) dt dv \right] e^{-i\omega\tau} d\tau \\
&= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \psi_s(\tau - v) \int_{\mathbb{R}} R_X(t) \psi_s(-v - t) dt dv \right] e^{-i\omega\tau} d\tau \\
&= \int_{\mathbb{R}} \left[\int_{\mathbb{R}} \psi_s(\tau - v) R_X * \psi_s(-v) dv \right] e^{-i\omega\tau} d\tau \\
&= \int_{\mathbb{R}} R_X * \psi_s(-v) \int_{\mathbb{R}} \psi_s(\tau - v) e^{-i\omega\tau} d\tau dv \\
&= \widehat{\psi}_s(\omega) \int_{\mathbb{R}} R_X * \psi_s(-v) e^{-i\omega v} dv \\
&= \widehat{\psi}_s(\omega) \widehat{R}_x^*(\omega) \widehat{\psi}_s^*(\omega) \\
&= \widehat{R}_X(\omega) |\widehat{\psi}_s(\omega)|^2
\end{aligned}$$

where the last equality follows from recalling that $R_X(\tau)$ is an even function, and hence its Fourier transform is real valued. \square

Stationarity is a pretty strict assumption, and as mentioned, does not include the Wiener process. The notion of a stochastic process with stationary increments relaxes this requirement and includes a much larger number of stochastic processes.

Definition 5.22. A stochastic process X has stationary increments if, for all $u \in \mathbb{R}$, the stochastic process $(X(t + u) - X(u))_{t \in \mathbb{R}}$ has the same distribution as $(X(t) - X(0))_{t \in \mathbb{R}}$.

Stochastic processes with stationary increments include many more processes than just stationary processes, which allows us to model a wider variety of phenomena. Note, in particular, if X has stationary increments then the mean and variance of an increment depends only on the length of the increment, not where it started. That is for any $u \in \mathbb{R}$,

$$\begin{aligned}
\mathbb{E}[X(t + u) - X(u)] &= \mathbb{E}[X(t) - X(0)] \\
\text{Var}(X(t + u) - X(u)) &= \text{Var}(X(t) - X(0))
\end{aligned}$$

An example of a stochastic process with stationary increments is the Wiener process.

Theorem 5.23. *The Wiener process, W , has stationary increments.*

Proof. Define the stochastic process $(\widetilde{W}(t))_{t \in \mathbb{R}}$ as

$$\widetilde{W}(t) = W(t + u) - W(u)$$

where $u \in \mathbb{R}$ is fixed but arbitrary. Our goal is to show distribution of \widetilde{W} does not depend on u , which would mean that W has stationary increments. We first note the Wiener process, W , is a Gaussian process, and thus so is \widetilde{W} . Therefore, if we can show the mean function and the covariance function of \widetilde{W} do not depend on u then we are finished. For the mean function we have

$$m_{\widetilde{W}}(t) = \mathbb{E}[\widetilde{W}(t)] = \mathbb{E}[W(t + u)] - \mathbb{E}[W(u)] = 0 - 0 = 0$$

which is obviously independent of u . For the covariance function we have:

$$\begin{aligned} 2\text{Cov}_{\widetilde{W}}(s, t) &= 2\mathbb{E}[\widetilde{W}(s)\widetilde{W}(t)] \\ &= 2\mathbb{E}[(W(s + u) - W(u))(W(t + u) - W(u))] \\ &= 2\mathbb{E}[W(s + u)W(t + u)] + 2\mathbb{E}[W(u)^2] - 2\mathbb{E}[W(u)W(s + u)] - 2\mathbb{E}[W(u)W(t + u)] \\ &= |s + u| + |t + u| - |t - s| + |u| + |u| - |u| - |u + s| + |s| - |u| - |t - u| + |t| \\ &= |t| + |s| - |t - s| \end{aligned}$$

which is also independent of u . □

Fractional Brownian motion [7, 8] is a generalization of Brownian motion (i.e., the Wiener process). It depends on a parameter H , which is called the Hurst parameter.

Definition 5.24. A stochastic process $B_H = (B_H(t))_{t \in \mathbb{R}}$ is called a fractional Brownian motion (fBm) with Hurst parameter $H \in (0, 1)$ if it satisfies the following:

- B_H is a Gaussian process with $B_H(0) = 0$
- $B_H(t)$ is continuous in t
- $m_{B_H}(t) = \mathbb{E}[B_H(t)] = 0$ for all $t \in \mathbb{R}$
- $\text{Cov}_{B_H}(s, t) = \frac{1}{2}(|s|^{2H} + |t|^{2H} - |t - s|^{2H})$ for all $s, t \in \mathbb{R}$.

Notice that when $H = 1/2$ we obtain regular Brownian motion, i.e., the Wiener process. Figure 30 plots three sample paths of fBm for $H = 0.75$, while Figure 31 plots sample paths of fBm for $H = 0.15, 0.55, 0.95$.

First note, that like the Wiener process, fractional Brownian motion has stationary increments for any $H \in (0, 1)$. Indeed, the proof is essentially identical.

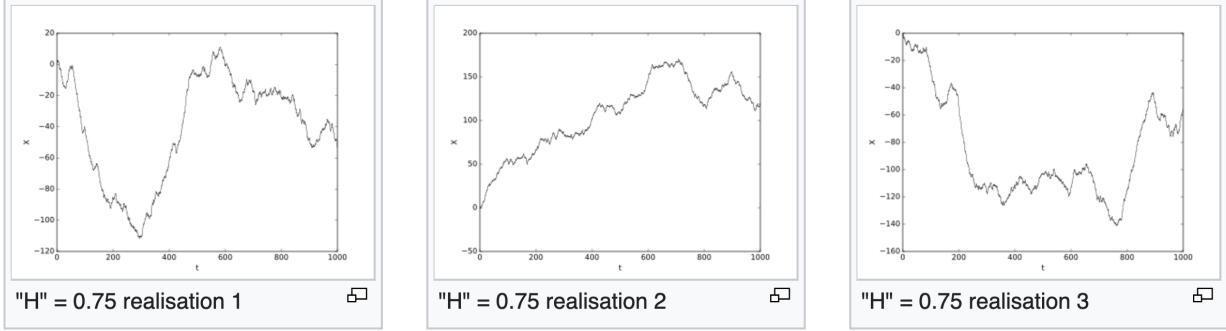


Figure 30: Three sample paths of fractional Brownian motion with Hurst parameter $H = 0.75$. Figure taken from https://en.wikipedia.org/wiki/Fractional_Brownian_motion.

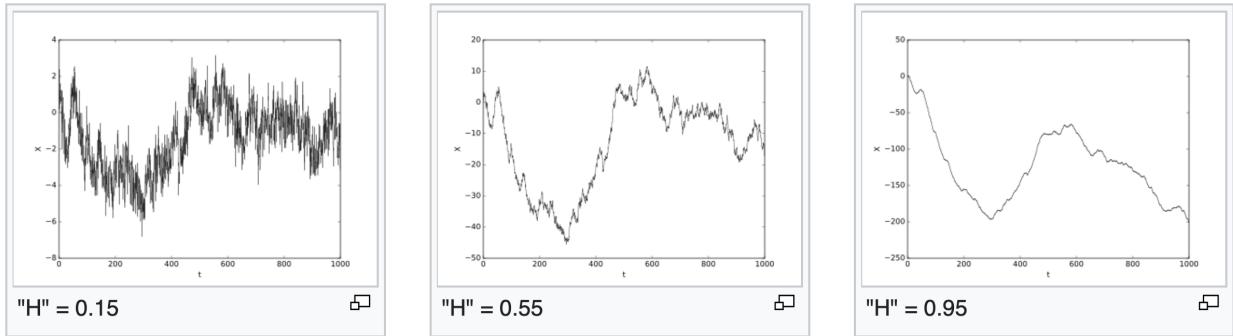


Figure 31: Sample paths of fractional Brownian motion with Hurst parameter $H = 0.15$ (left), $H = 0.55$ (middle), and $H = 0.95$ (right). Figure taken from https://en.wikipedia.org/wiki/Fractional_Brownian_motion.

We also remark that fBm, and hence the Wiener process too, are self similar. A stochastic process $X = (X(t))_{t \in \mathbb{R}}$ is self-similar of order H if

$$\forall a > 0, \quad (X(at))_{t \in \mathbb{R}} \stackrel{d}{=} a^H (X(t))_{t \in \mathbb{R}}$$

From the definition of fBm we see it is self-similar, as its mean function satisfies

$$\mathbb{E}[B_H(at)] = 0 = \mathbb{E}[a^H B_H(t)]$$

and its covariance function satisfies

$$\begin{aligned} \mathbb{E}[B_H(as)B_H(at)] &= \frac{1}{2}(|as|^{2H} + |at|^{2H} - |as - at|^{2H}) \\ &= \frac{a^{2H}}{2}(|s|^{2H} + |t|^{2H} - |t - s|^{2H}) \\ &= \mathbb{E}[a^H B_H(s)a^H B_H(t)] \end{aligned}$$

Furthermore, since it is a Gaussian process, it is completely determined by its mean function and covariance function.

References

- [1] Stéphane Mallat. *A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way*. Academic Press, 3rd edition, 2008.
- [2] Elias M. Stein and Rami Shakarchi. *Fourier Analysis: An Introduction*. Princeton Lectures in Analysis. Princeton University Press, 2003.
- [3] John J. Benedetto and Matthew Dellatorre. Uncertainty principles and weighted norm inequalities. *Contemporary Mathematics*, 693:55–78, 2017.
- [4] Yves Meyer. *Wavelets and Operators*, volume 1. Cambridge University Press, 1993.
- [5] Karlheinz Gröchenig. *Foundations of Time Frequency Analysis*. Springer Birkhäuser, 2001.
- [6] Steven Shreve. *Stochastic Calculus for Finance II*. Springer-Verlag New York, 2004.
- [7] Hermine Biermé. Introduction to random fields and scale invariance. hal-01493834, 2018.
- [8] Georgiy Shevchenko. Fractional Brownian motion in a nutshell. arXiv:1406.1956, 2014.