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Definition 5.20. The power spectral density of a second order stationary process X is the
Fourier transform of Rx(7), that is, Rx(w).

For a stationary process X, the function Rx(7) = Covx(0,7) measures the variability of
random fluctuations of X over time. The power spectral density organizes the total variability
of X over all times into different frequency components. A time frequency transforms of a
stationary process allow us to measure the variability of X within time-frequency Heisenberg
boxes. For example, the wavelet coefficients of X define a family of new stochastic processes
X x 1), indexed by the scale parameter s > 0, which are defined as

WX (u,s) =X x1s(u) = / X(t)s(u—1t)dt
R
We assume 19)4(t) is continuous, real valued, and compactly supported. Note the integral of

a stochastic process with continous sample paths times a continuous deterministic function
f(t), over a finite integral, is a random variable defined using the Riemann integral:
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where a =t <t} < --- <t'_ | <! =0 for all n, and 6, = maxo<i<n_1|tiy1 — ;| = 0 as

n — oo. The new stochastic process X b5 = (X * 1)5(u))yuer retains only the fluctuations
of X at the scale s, for each time wu; smaller and larger scale fluctuations are eliminated
because the wavelet 1, has a frequency support essentially supported in a frequency band
determined by the scale s. The next proposition encodes this statement more precisely.

Theorem 5.21. Let X be a second order stationary process with continuous sample paths
and with mean zero, i.e., E[X] = 0, and let ¢ be a continuous real valued wavelet with
compact support. Then X x4 is a stationary process for each s > 0 and:

Ry, (0) = Ry (w)[th5(w)? = s[tb(sw)|*Rx (w) (52)

Proof. The fact that X x1), is stationary is straightforward. We also note that since E[X] = 0,
we also have E[X x ¢);] = 0 for each s > 0. Thirdly, if Rx € L'(R) then Rx.,, € L'(R);
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Since 1) is continuous and compactly supported, it is in L!(R) and so the bound is finite,
and Ry.,, € L'(R).



Now let us prove (52). Many of the steps are the same as above.
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where the last equality follows from recalling that Rx(7) is an even function, and hence its
Fourier transform is real valued. O

)

Stationarity is a pretty strict assumption, and as mentioned, does not include the Wiener
process. The notion of a stochastic process with stationary increments relaxes this require-
ment and includes a much larger number of stochastic processes.

Definition 5.22. A stochastic process X has stationary increments if, for all u € R, the
stochastic process (X (¢t + u) — X (u)):er has the same distribution as (X (t) — X(0))ser.

Stochastic processes with stationary increments include many more processes than just
stationary processes, which allows us to model a wider variety of phenomena. Note, in
particular, if X has stationary increments then the mean and variance of an increment
depends only on the length of the increment, not where it started. That is for any u € R,

E[X(t +u) = X(u)] = E[X(t) — X(0)]
Var(X (t +u) — X(u)) = Var(X(t) — X(0))



An example of a stochastic process with stationary increments is the Wiener process.

Theorem 5.23. The Wiener process, W, has stationary increments.

Proof. Define the stochastic process (W (t))ier as

—

W(t) = W(t+u) — W(u

where u € R is fixed but arbitrary. Our goal is to show distribution of W does not depend on
u, which would mean that W has stationary increments. We first note the Wiener process,
W, is a Gaussian process, and thus so is W. Therefore, if we can show the mean function
and the covariance function of W do not depend on u then we are finished. For the mean
function we have

me(t) = E[W (t)] = E[W (t +u)] — E[W(u)] =0—-0=0
which is obviously independent of u. For the covariance function we have:
2Cov(s,t)

W
= 2E[W (s)W(2)]
= 2E[(W (s +u) = W(uw)(W(t +u) = W(u))]
= 2E[W (s + w)W (t + u)] + 2E[W (u)?] — 2E[W (u)W (s + u)] — 2E[W (u)W (t + u)]
=ls4u|l+ [t +u| — |t —s|+ |u| + |u| = |u| = |u+s|+|s| — |u] — |t —u| + |{]
= [t] + [s[ = |t — 5]
which is also independent of w. O

Fractional Brownian motion |7, 8] is a generalization of Brownian motion (i.e., the Wiener
process). It depends on a parameter H, which is called the Hurst parameter.

Definition 5.24. A stochastic process By = (Bpu(t))wcr is called a fractional Brownian
motion (fBm) with Hurst parameter H € (0,1) if it satisfies the following:

e By is a Gaussian process with By (0) =0

e By(t) is continuous in ¢

e mp,(t) =E[Bg(t))=0forallt € R

o Covp,(s,t) = 2(|s]* + [t} — |t — s|*) for all s,t € R.

Notice that when H = 1/2 we obtain regular Brownian motion, i.e., the Wiener process.
Figure 30 plots three sample paths of fBm for H = 0.75, while Figure 31 plots sample paths
of fBm for H = 0.15,0.55,0.95.

First note, that like the Wiener process, fractional Brownian motion has stationary in-
crements for any H € (0,1). Indeed, the proof is essentially identical.
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Figure 30: Three sample paths of fractional Brownian mo-
tion with  Hurst parameter H = 0.75. Figure taken  from
https://en.wikipedia.org/wiki/Fractional _Brownian_motion.
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Figure 31: Sample paths of fractional Brownian motion with Hurst parameter H =
0.15 (left), H = 0.55 (middle), and H = 0.95 (right). Figure taken from
https://en.wikipedia.org/wiki/Fractional_Brownian_motion.

We also remark that fBm, and hence the Wiener process too, are self similar. A stochastic
process X = (X(t))ser is self-similar of order H if

Va>0, (X(at))er < a®(X(1))ier
From the definition of fBm we see it is self-similar, as its mean function satisfies
E[Bx(at)] = 0 = E[a"” Bu(t)]
and its covariance function satisfies
1(|a8|2H + |at* — |as — at[*)

2
Cl2H
= (sl + 1t = 1t = s)

E[By(as)By(at)] =

= E[a"” By (s)a” By (t)]


https://en.wikipedia.org/wiki/Fractional_Brownian_motion
https://en.wikipedia.org/wiki/Fractional_Brownian_motion

Furthermore, since it is a Gaussian process, it is completely determined by its mean function
and covariance function.
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