
Math 994-002: Applied and Computational Harmonic Analysis, MSU, Spring 2020

Lecture 12: Real Wavelets
February 18, 2020

Lecturer: Matthew Hirn

4.4.3 Real Wavelets

Section 4.3.1 of A Wavelet Tour of Signal Processing.

We now shift our focus to real wavelets. As we shall see, real valued wavelets are good for
measuring sharp signal transitions, and in particular measuring the the regularity of f(t) at
a specific point t = u. Indeed, since

R
 = 0, the wavelet transform Wf(u, s) = hf, u,si

measures the variation of f in a neighborhood of u proportional s. “Zooming in” on these
variations will allow us to measure the regularity of f at u.

For now we show that like the analytic wavelet transform, the real wavelet transform is
invertible and preserves the energy of f . We collect these results in the next theorem.
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The proof is nearly identical to the proof of Theorem 4.6, and so is omitted. An example
of a real valued wavelet, which we shall use later and which also satisfies the conditions of
Theorem 4.7, is the so called “Mexican hat wavelet.” The Mexican hat wavelet is the second
derivative of a suitably normalized Gaussian function g�(t) with mean zero and standard
deviation �:
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The Fourier transform of  (t) is
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Figure 18: Mexican hat wavelet for � = 1 and its Fourier transform.

Figure 18 plots the Mexican hat wavelet and its Fourier transform.
Figure 19 computes the wavelet transform of the signal from Figure 13 using the Mexican

hat wavelet. The maximum scale is smaller than one because the support of f(t) is limited
to t 2 [0, 1]. In all numerical calculations, including this one, the minimum scale is limited
by the sampling interval of the discretized signal due to aliasing effects. When the scale
decreases, the wavelet transform Wf(u, s) has a rapid decay to zero in the regions where the
signal is regular. Isolated singularities create cones of large amplitude wavelet coefficients
that converge to the locations of the isolated singularities, as on the left hand side of the
signal. The right hand side of the signal is singular almost everywhere. If this part can be
modeled as a random process or multifractal, then under certain assumptions the distribution
of singularities can be estimated from Wf(u, s), which can characterize the underlying signal
generation process.

In numerical applications, both the minimum and maximum scale are limited. We now
examine the wavelet transform when we compute Wf(u, s) only for s < s0. In this case
we lose the low frequency components of f(t), since the supports of  s(!) =

p
s b ⇤(s!) as

s ! +1 collapse in around ! = 0; see Figure 20 for an illustration.
In order to recover this lost low frequency information, we introduce a single scaling

function � that is an aggregation of all wavelets at scales larger than one. The modulus of
its Fourier transform is defined as:
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The complex phase of b�(!) can be arbitrarily chosen; in particular we can set it to zero
so that � is real valued. One can verify that k�k2 = 1. The definition of b�(!) and the
admissibility condition yields:

|b�(!)|2  |b�(0)|2 = lim
⇠!0

|b�(⇠)|2 = C , 8! 2 R
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Figure 19: Real wavelet transform Wf(u, s) computed with a Mexcian hat wavelet. The
vertical axis represents log2 s, Black, gray and white points correspond, respectively, to
positive, zero, and negative wavelet coefficients.

Figure 20: Scaled Fourier transform | b (2j!)|2 for 1  j  5 and ! 2 [�⇡, ⇡]. Notice the gap
around ! = 0 due to the limitation of the largest scale s = 25.
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Denote by �s(t) the scaling of �(t) by s:
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The low frequency approximation of f at scale s is

Lf(u, s) = f ⇤ �s(u)

In this case, the wavelet inversion formula becomes:

f(t) =
1

C 

Z s0

0

Wf(·, s) ⇤  s(t)
ds

s2
+

1

C s0
Lf(·, s0) ⇤ �s0(t) (32)

For the Mexican hat wavelet defined in (30), the Fourier transform of the scaling function
is:
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See Figure 21 for a plot.

Figure 21: Scaling function associated to a Mexican hat wavelet and its Fourier transform.

Exercise 41. Read Section 4.5 of A Wavelet Tour of Signal Processing.

Exercise 42. Let � be the scaling function defined by (31). Prove that k�k2 = 1.

Exercise 43. Prove the reconstruction formula given in (32), which can be rewritten as:
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Exercise 44. [20 points] Implement the real wavelet transform Wf(u, s) using the Mexican
hat wavelet. Write down a signal f(t) similar to the one from Figure 13 (does not have to
be exactly the same!) and compute Wf(u, s) numerically. Turn in a plot of your signal and
a plot of Wf(u, s), as in Figure 19.
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5 Wavelet Zoom
Chapter 6 of A Wavelet Tour of Signal Processing [1].

Wavelet transforms can zoom in and characterize the regularity of a function f(t) at indi-
vidual points t = v. We show how in this section.

5.1 Lipschitz Regularity
Section 6.1 of A Wavelet Tour of Signal Processing

5.1.1 Lipschitz Definition and Fourier Analysis

Section 6.1.1 of A Wavelet Tour of Signal Processing

We begin by defining the spaces Ċ↵(R) and C↵(R) for any ↵ > 0, ↵ /2 Z. Let 0 < ↵ < 1.
Define the modulus of continuity of f(t), !f (h), as:

!f (h) = sup{|f(t)� f(u)| : |t� u|  h} .

The space Ċ↵(R), for 0 < ↵ < 1, consists of those functions for which

8h > 0 , !f (h)  Kfh
↵

Another way of writing this condition is:

8 (t, u) 2 R2
, |f(t)� f(u)|  Kf |t� u|

↵

We thus see that Ċ↵(R) consists of those functions that satisfy a type of global Lipschitz
condition; they are called ↵-Hölder functions. The space C↵(R) contains all those functions
in Ċ↵(R) that are also bounded, i.e.,

C↵(R) = Ċ↵(R) \ L1(R)

These definitions are extended to arbitrary ↵ > 0, ↵ /2 Z, in the following way. Let
n < ↵ < n+ 1 for some n 2 N. Then

f 2 Ċ↵(R) () f 2 Cn(R) and f
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2 Ċ↵�n(R)

where Ċ↵�n(R) is defined as above since 0 < ↵� n < 1. Similarly,

f 2 C↵(R) () f 2 Cn(R) and f
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2 C↵�n(R) 8 k  n

We can link these definitions to Taylor’s theorem. Suppose that f 2 Ċ↵(R) for n < ↵ <

n+1. Let v 2 R and let Jvf(t) be the jet of f at v, which is the n-degree Taylor polynomial
of f around v:

Jvf(t) =
nX

k=0

f
(k)(v)
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Denote the residual by Rvf(t), i.e.,

Rvf(t) = f(t)� Jvf(t)

Then using Taylor’s theorem and the fact that f 2 Ċ↵(R),

|Rvf(t)|  K|t� v|
↵

Conversely, suppose that f(t) is a continuous function for which there exists a universal
constant K and such that for each v 2 R, there exists a polynomial pv(t) of degree at most
n such that

|f(t)� pv(t)|  K|t� v|
↵

Then f 2 Ċ↵(R).
We can use this link with Taylor’s theorem to define notions of local regularity rather

than global regularity. In particular, a function f(t) is pointwise Lipschitz ↵ > 0 at v 2 R if
there exists Kv > 0 and a polynomial pv(t) of degree n = b↵c such that

|f(t)� pv(t)|  Kv|t� v|
↵ (33)

Furthermore, a function f is uniformly Lipschitz ↵ over an interval [a, b] if it satisfies (33)
for all v 2 [a, b] with a constant K that is independent of v.

Remark 5.1. At each v 2 R the polynomial pv(t) is unique. Additionally, if f is n = b↵c

times continuously differentiable in a neighborhood of v, then pv(t) = Jvf(t).

Remark 5.2. A function that is bounded but discontinuous at v is said to Lipschitz ↵ = 0 at
v. If ↵ < 1 at v, then f is not differentiable at v and ↵ characterizes the type of singularity.
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