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4.4.2 Wavelet Ridges

Section 4.4.3 of A Wavelet Tour of Signal Processing.

Motivated by the hyperbolic chirp example and the poor performance of the windowed
Fourier ridges for this example, we define and study wavelet ridges. We utilize an approxi-
mately analytic “wavelet”  (t) of the form:

 (t) = g(t)ei⌘t

where the window function g(t) satisfies the same assumptions as in the windowed Fourier
case; namely:

• supp g = [�1/2, 1/2]

• g(t) � 0 so that |bg(!)|  bg(0) for all ! 2 R

• kgk2 = 1 but also bg(0) =
R
g(t) dt = kgk1 ⇡ 1

Let �! be the bandwidth of bg. If ⌘ > �! then

b (!) = bg(! � ⌘) ⌧ 1, 8!  0

Thus  (t) is not strictly a wavelet nor is it strictly analytic, but it nearly satisfies both
conditions.

Notice that dilated and translated wavelets can be written as:

 u,s(t) =
1
p
s
 

✓
t� u

s

◆
= gs,u,⌘/s(t)e

�i(⌘/s)u

where
gs,u,⇠(t) =

1
p
s
g

✓
t� u

s

◆
e
i⇠t

The resulting wavelet transform use time frequency atoms similar to those of the windowed
Fourier transform. However, in this case the scale s varies over (0,+1) and ⇠ = ⌘/s:

Wf(u, s) = hf, u,si = hf, gu,s,⌘/sie
i(⌘/s)u
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Theorem 4.5 computes hf, gu,s,⇠i when f(t) = a(t) cos ✓(t). Applying this theorem to the
wavelet transform gives:

Wf(u, s) = hf, gu,s,⌘/sie
i(⌘/s)u =

p
s

2
a(u)ei✓(u) [bg(s[⌘/s� ✓

0(u)]) + "(u, ⌘/s)]

A normalized scalogram computes

ePWf(u, ⌘/s) =
|Wf(u, s)|2

s
=

1

4
a(u)2 |bg(s[⌘/s� ✓

0(u)]) + "(u, ⌘/s)|2

If the error term "(u, ⌘/s) is negligible, ePWf(u, ⌘/s) obtains its maxima at (u, ⌘/su) where

⌘

su
= ✓

0(u) =) su =
⌘

✓0(u)

The corresponding points (u, ⌘/su) are called wavelet ridges.
Recall the error term "(u, ⌘/s) is broken into four components:

|"(u, ⌘/s)|  "a,1(u, ⌘/s) + "a,2(u, ⌘/s) + "✓,2(u, ⌘/s) + sup
!�s✓0(u)

|bg(!)|
| {z }

(iv)

At the ridge points (u, ⌘/su) the first error term "a,1 and the fourth error term can be made
negligible if the bandwidth �! satisfies

�!  su✓
0(u) =) �!  ⌘

but this was assumed from the start in order to make  an approximately analytic wavelet,
so these two error terms are guaranteed to be small by the choice of the wavelet. Using
Theorem 4.5, the second order terms at the ridge points are bounded as:

"a,2(u, ⌘/su)  sup
|t�u|su/2

s
2
u|a

00(t)|

|a(u)|
= sup

|t�u|⌘/2✓0(u)

⌘
2

✓0(u)2
|a

00(t)|

|a(u)|

and
"✓,2(u, ⌘/su)  sup

|t�u|su/2
s
2
u|✓

00(t)| = sup
|t�u|⌘/2✓0(u)

⌘
2

✓0(u)2
|✓

00(t)|

Thus since ✓0(u) is in the denominator, we see that if the instantaneous frequency is small,
a
0(u) and ✓0(u) must have slow variations (i.e., a00(u) and ✓00(u) need to be small), but a

0(u)
and ✓0(u) are allowed to vary much more quickly when the instantaneous frequency is large.

Now turn to our more general signal model:

f(t) =
KX

k=1

ak(t) cos ✓k(t)
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Recall that to separate the K instantaneous frequencies we require that

bg(sku[✓0k(u)� ✓
0
l(u)]) ⌧ 1, 8 k 6= l,

⌘

sku

= ✓
0
k(u)

which can be obtained if

�!  s
k
u|✓

0
k(u)� ✓

0
l(u)| =

⌘|✓
0
k(u)� ✓

0
l(u)|

✓0k(u)
, k 6= l

Under the assumptions on the window g, the primary free parameter one has is the
frequency ⌘. There is a tension between on the one hand wanting to make ⌘ large relative
to the bandwidth, so that the wavelet is nearly analytic, the error terms "a,1 and (iv) are
small, and so multiple instantaneous frequencies are separated; however, the second order
error terms "a,2 and "✓,2 may blow up if ⌘ is made too large.

Let us now return to the examples of the linear and hyperbolic chirps. We start with the
sum of two hyperbolic chirps, which the windowed Fourier transform had trouble analyzing:

f(t) = a1 cos

✓
↵1

�1 � t

◆
+ a2 cos

✓
↵2

�2 � t

◆

In this case ✓k(t) = ↵k/(�k � t) and ✓
0
k(t) = ↵k/(�k � t)2. Since the amplitudes a1 and a2

are constant, the second order term "a,2(u, su) = 0. The other second order error term is
bounded as:

"✓,2(u, su)  max
k=1,2

sup
|t�u|⌘/2✓0k(u)

⌘
2 |✓

00
k(t)|

✓0(u)2

 max
k=1,2

sup
|t�u|⌘(�k�u)2/2↵k

⌘
2 2↵k

(�k � t)3
(�k � t)4

↵2
k

 max
k=1,2

sup
|t�u|⌘(�k�u)2/2↵k

⌘
22(�k � t)

↵k

This error term will be small if
⌘
2
⌧

↵k

�k � t

This will be the case if, for example, t 2 [0, �k) and ⌘ ⌧

p
↵k/�k. Figure 16 illustrates how

the wavelet ridges successfully follow the instantaneous frequencies of the two hyperbolic
chirps.

Now let us go back to the two linear chirps signal

f(t) = a1 cos(bt
2 + ct) + a2 cos(bt

2)

which has frequencies ✓1(t) = bt
2 + ct and ✓2(t) = bt

2. We thus have

|✓
0
1(u)� ✓

0
2(u)|

✓01(u)
=

|c|

2bt
! 0 as t ! +1
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Figure 16: Analysis of a signal consisting of two hyperbolic chirps. (a) Normalized scalogram
ePWf(u, ⌘/s); (b) Wavelet ridges.
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Figure 17: Analysis of a signal consisting of two linear chirps. (a) Normalized scalogram
ePWf(u, ⌘/s); (b) Wavelet ridges.
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Thus for some finite t we will not be able to separate the instantaneous frequencies because
of interferences. Figure 17 illustrates this phenomenon, as for large t the ridges follow the
interference patterns rather than the instantaneous frequencies.

The take home message is that better is more sparse. This is true of course for com-
pression, where sparser representations require less memory to store. But the linear and
hyperbolic chirp examples show that sparsity also means we have found a time frequency
transform that has a resolution adapted to the time frequency properties of the signal, in
which case the number of ridge points is small. Conversely, if signal structures do not match
our dictionary of time frequency atoms, then their energy will diffuse over many such atoms
which produces more ridge points.

Exercise 39. Read Section 4.4.3 of A Wavelet Tour of Signal Processing.

Exercise 40. Adapt your windowed Fourier ridge code from Exercise 35 to compute the
normalized scalogram ePWf(u, ⌘/s) and corresponding wavelet ridges. Test your code on the
sum of two linear chirps and the sum of two hyperbolic chirps. Turn in plots of your wavelet
ridges. Do you get something similar to the plots in Figures 16 and 17?
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