Math 994-002: Applied and Computational Harmonic Analysis, MSU, Spring 2020

Lecture 09: Windowed Fourier Ridges
February 6, 2020
Lecturer: Matthew Hirn

4.3.2 Windowed Fourier Ridges
Section 4.4.2 of A Wawvelet Tour of Signal Processing.
We are going to use the windowed Fourier transform, and in particular the local maxima

of the windowed Fourier transform, to isolate individual amplitudes ax(t) and instantaneous
frequencies ¢, (t) as in the signal model (21), repeated here:

[~

f(t) =) ap(t)cosby(t)

k=1

We make some additional assumptions on the real symmetric window ¢(¢). We suppose
that:

e suppg = [-1/2,1/2]
e g(t) > 0 so that [g(w)| < g(0) for all w € R
e ||gll2 =1 but also g(0) = [g(t)dt = ||lg]l, = 1

For a scale o set
go(t) = 07 ?g(c7"t)
Note that
Supp 9o = [—0/2,0/2] and |gll2 =1

We define the windowed Fourier transform with the scale parameter o as:

Sef(0.6) = [ F(Oalt = e i

The next theorem relates S, f(u, &) to the instantaneous frequency of f(t).

Theorem 4.5. Let f(t) = a(t) cosO(t). If £ > 0, then

7,

Sof(1,€) =

u)e € (G le — 0/ (w)]) + e(u,€)



where
|€(U, §)| S Ea,l(uv 5) + ga,2(ua 5) + 59,2(“7 5) + sup |/g\(CU)|

|w|>0 6’ (u)
with ’ /( )|
glalu
Ean(u,§) <
|a(u)]
e 2o (1)
o°la” (t
5a,2(uaf) < sup —————
[t—u|<o/2 la(u)|

Furthermore, if o|a’'(u)||a(u)|~! <1, then

eo2(u, &) < sup  0?16"(t)]
jt—ul<o/2

And finally, if € = 0'(u), then

ola’(u)|
|a(u)]

We omit the proof, which is given in pages 119-122 of A Wavelet Tour of Signal Pro-
cessing. If we can neglect the error term e(u, ), then we will see that S, f(u, &) enables us
to measure a(u) and 6’'(u). This will be the case if a(t) and 6(t) vary slowly. In particular,
€41 1s small if a(t) varies slowly over the whole real line, while ,5 and €42 only require the
second derivatives of a(t) and 6(t) to be small over an interval of length equal to the support
of the window ¢. The fourth part of the error term is small if

€a1(u,€) = 9" (200 (u))]

Aw < o' (u) (22)

where recall Aw is the bandwidth of g.
Let us now suppose that the error term can disregarded, so that

0 0,€) & Y alu)e - ole — ()

Since the maximum of |g(w)| is at w = 0, we see that for each u the spectrogram Pgf(u,§) =
1S, f(u,&)]? is maximum at & = 6'(u). These time frequency points (u,&,), which form
curves in the time frequency plane, are called ridges. At ridge points we have:

S0 0,60) = 80 0,0 (0) = Y a(w)e O G(0) 4 <, (1)

If the bandwidth satisfies (22), then Theorem 4.5 shows that the £,1(u,&) error term is
negligible, since in this case |[¢§'(206'(u))| will be negligible.
We can calculate the amplitude from the ridges as well:
2|So.f (u, 0" (u))]
a(u) ~ —
= T

2




if the error term e(u, #'(u)) is small.

The spectrogram computes the instantaneous frequency by computing the magnitude of
Sy (u, &) along the ridges. Another way to calculate the instantaneous frequency is to look
at the phase of S, f(u, ) along the ridges. Let Ogf(u, &) be the complex phase of S, f(u,§),
which again if the error term can be disregarded, is just:

Osf(u,§) = 0(u) - Lu

It follows that
aGSf(“) 5)

/
and thus the instantaneous frequency can be computed by estimating this partial derivative
and solving for its zeros.
Consider now a signal model

[M] =

ft) = a(t) cos O (t)

k=1

where ag(t) and 0},(t) have small variations over intervals of size o and o6, (t) > Aw (in other
words, we can neglect the error term). Since the windowed Fourier transform is linear, we
have:

G Za ORI A
We can distinguish between the K dlfferent instantaneous frequencies if
(o0, (u) — 0j(u)]) <1, VueR, k#1 (23)
We can obtain this condition if the bandwidth of ¢ satisfies
Aw < olb(u) = 0)(u)|], YueR, k#I

In this case, when & = 60;(u), we have

NG

ng(u, eg(u)) ~ T al( ) 1[0; (w) —ud;( + Zak z[@k )—ud)(w)] ( [8/( ) . 9;(%)])
Al
<1

o 0 () ()]~

and thus we can estimate the instantaneous frequency 6;(u) and corresponding amplitude

a;(u). Notice that the ridge points are distributed along the K time frequency curves
{(u,0,(u)) : w € R, 1 <k < K}. So long as these curves remain well separated (as
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measured by (23)), we will be able to recover the instantaneous frequencies. However, if the
curves get too close, or even worse intersect, then the windowed Fourier transform will have
interference and the ridge pattern will be destroyed in that neighborhood.

We have already seen that along the ridge points the error term e, ;(u, §) is negligible if
the bandwidth Aw is small enough. But we still need make sure the error terms e, (u, )
and g o(u, £) are small, which means from Theorem 4.5 we need:

2| 0
t
5‘172<u7 5) S max sup M

<1
[t—u|<o/2 |(Ik (U) |

and

eo2(u, &) <max sup o’|Gy(t)] < 1
ko ft—ul<o/2

These place a condition on ¢ in which we would like to make o small. However, recall that
to make €, (u, ) small at the ridge points and the fourth part of the error term small, we
needed

Aw < a6, (u)

which means we would like to make ¢ large. Since supp g, = [—0/2, 0 /2], this means we need
to carefully select the window size. Notice how this leads to a tradeoff between localization
in time and localization in frequency.

Let us now consider some examples. A linear chirp is of the form:

f(t) = acos(bt* + ct)

It is called linear because its instantaneous frequency is ¢'(t) = 2bt + ¢. Suppose we have a
signal consisting of two linear chirps:

f(t) = ay cos(bt® + ct) + ay cos(bt?)
To distinguish these two linear chirps, we need our window g to have bandwidth Aw satisfying
Aw < olt(t) — (1) = olc]

Since the amplitudes are constant, the error term ¢, is zero. However, g4 2(u, €) places an
upper bound on the time support, which is:

o0y (u)| = 2bo* < 1, k=1,2

Combining the previous two inequalities we get:

Aw 1 c
— <K — = AK€ —

c Vb Vb

Figure 11 illustrates an example.
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Figure 11: Top: Sum of two parallel linear chirps. Middle: Spectrogram. Bottom: Windowed
Fourier ridges.
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Figure 12: Top: Sum of two hyperbolic chirps. Middle: Spectrogram. Bottom: Windowed
Fourier ridges.



Now consider a hyperbolic chirp, which has the form:

F(t) = acos (%)

When t < (3, it has instantaneous frequency

(6 —1)?

which varies quickly as ¢ approaches 5. Indeed, as t — [ we have #'(t) — 400, which
means that the instantaneous frequency increases to +o00 in a finite amount of time. This is
a problem for the windowed Fourier transform because it has a fixed scale in time, and so
cannot resolve the fast high frequency changes of the hyperbolic chirp. More precisely, for
the error term g 5(u, &) in Theorem 4.5, we have g9 5(u, &) < 02|6”(u)| but for the hyperbolic
chirp,

0'(t) =

oo

|8 —ul?
Therefore the error term is uncontrolled, which leads to a lot of interference in the time
frequency response S, f(u,§). Figure 12 illustrates the point for the sum of two hyperbolic

chirps,
(03] (6]
t) =
f(t) = ay cos (51 —t) + as cos (@—t)

Exercise 33. Read Section 4.4.2 of A Wavelet Tour of Signal Processing.

o210 (u)] = >1, Vu-p|<(c®a)?

Exercise 34. Now we are going to use your windowed Fourier transform code to reproduce
some results from the book.

(a) Read Example 4.5 (p. 94) of A Wavelet Tour of Signal Processing and determine
what the signal is (write it out analytically). Then compute the windowed Fourier
transform and corresponding spectrogram, and recreate something similar to Figure
4.3(a). Provide a plot of your spectrogram.

(b) Consider the signal
f(t) = ay cos(bt? + ct) + ay cos(bt?)

which consists of two real valued linear chirps. Compute the windowed Fourier trans-
form and spectrogram of f(¢). Can you find a window ¢ and parameters a;, as, b, ¢
such that you can recreate something similar to Figure 4.13(a)? Provide a plot of your
spectrogram. Note: Unlike Exercise 32(b) in which you sampled the single linear chirp
on [—N/2,N/2), here sample it on [0, N) so the instantaneous frequency is monotonic.

(c) Consider the signal

f(t) = a; cos (Blai t) + as cos (ﬁgai t>
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which consists of two hyperbolic chirps. Select parameters aq, as, oy, as, 1, f2 and com-
pute the windowed Fourier transform and spectrogram of f(¢). Do you get something
like Figure 4.14(a)? Provide a plot of your spectrogram.

Exercise 35. We are going to compute numerically windowed Fourier ridges.

(a) Take your windowed Fourier code and add in code to estimate the Fourier ridges by
estimating the local maxima of Psf(u,&) = |Syf(u,&)[*

(b) Now write code to estimate Fourier ridges using the alternate approach, which was to
let ©gf(u,) be the complex phase of S, f(u, &), and to solve for £ such that

90 f B
5o (&) =0

(c) Test your code by computing the windowed Fourier ridges of the signals from Exercise
34. Do you get results similar to those from Figures 4.12, 4.13(b), 4.14(b) in A Wawvelet
Tour of Signal Processing? Turn in your plots of the ridges.

Exercise 36. (a) Let f(t) = cos(acos(bt)). We want to compute precisely the instanta-
neous frequency of f(¢) from the ridges of its windowed Fourier transform. Find a
necessary condition on the window support as a function of a and b.

(b) Now let f(t) = cos(acos(bt)) + cos(acos(bt) + ct). Find a condition on a, b and ¢ in
order to measure both instantaneous frequencies with the ridges of a windowed Fourier
transform.

(c) Verify your calculations for (a) and (b) numerically using your windowed Fourier ridge
code from the previous exercise. Turn in plots of the spectrogram for (a) and (b) and
plots of the ridges for (a) and (b).
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