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Lecturer: Matthew Hirn

4.2.2 Inversion for Windowed Fourier

The windowed Fourier transform is highly redundant and covers the entire time frequency
plane. Intuitively, we should have more than enough information to invert this transform.
Indeed, that is the case:

Theorem 4.4. Let g be a real symmetric window with g 2 L2(R) and kgk2 = 1. Then for
all f 2 L2(R),

f(t) =
1

2⇡

Z

R

Z

R
Sgf(u, ⇠)g(t� u)ei⇠t du d⇠

We are going to prove the inversion theorem using techniques from functional analysis.
We collect the main points first. Let H be a Hilbert space with norm k ·k, and let ` : H ! C
be a linear functional. We say that ` is continuous if for v, h 2 H we have

lim
khk!0

k`(v + h)� `(v)k = 0

The linear functional ` is bounded if there exists a universal constant C � 0 such that

|`(v)|  Ckvk, 8 v 2 H

It is a well known fact that linear functionals are continuous if and only if they are bounded.
Now let ` : H ! C be a continuous linear functional. The Riesz Representation Theorem

states that for each such `, there exists a unique h 2 H such that

`(v) = hv, hi, 8 v 2 H

Since it is clear that the mappings v 7! hv, hi are continuous linear functionals for very
h 2 H, the Riesz representation theorem shows that there is a bijective correspondence
between H and continuous linear functionals on H.

Finally, suppose now that F : R ! H, so that for each u 2 R, F (u) is an element of
the Hilbert space H. One can think of F as a “vector valued function.” For example, if
H = L2(R) then F (u)(t) is a square integrable function in the variable t 2 R for each u 2 R.
Using F , one can define a linear functional

`F (v) =

Z

R
hv, F (u)i du
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If `F is bounded / continuous, then by the Riesz representation theorem there exists a unique
element ef 2 H such that `F (v) = hv, efi. Thus

hv, efi =
Z

R
hv, F (u)i du, 8 v 2 H (19)

We write
ef(t) =

Z

R
F (u)(t) du

which means that (19) holds; this is a type of weak equality. We are going to prove Theorem
4.4 in this sense.

Proof of Theorem 4.4. Define a linear functional ` : L2(R) ! C as

`(h) =
1

2⇡
hSgh, SgfiL2(R2), 8h 2 L2(R)

By the Parseval theorem for windowed Fourier transforms (Theorem 4.1), we have:

`(h) = hh, fi  kfk2khk2

Thus ` is a bounded, and hence a continuous, linear functional. At this point we could apply
the Riesz representation theorem, but it would just tell us what we already know which is
that `(h) = hh, fi. Instead we come up with a “vector valued function” F (u, ⇠) 2 L2(R) and
show that

`(h) =

Z

R

Z

R
hh, F (u, ⇠)i du d⇠ (20)

To do so, recall that we defined

gu,⇠(t) = g(t� u)ei⇠t

and that we can write
Sf(u, ⇠) = hf, gu,⇠i

We have:

`(h) =
1

2⇡
hSgh, SgfiL2(R2) =

1

2⇡

Z

R

Z

R
Sgh(u, ⇠)Sgf

⇤(u, ⇠) du d⇠

=
1

2⇡

Z

R

Z

R
hh, gu,⇠iSgf

⇤(u, ⇠) du d⇠

=

Z

R

Z

R
hh, (2⇡)�1

Sgf(u, ⇠)gu,⇠i du d⇠

Therefore we have verified (20) with

F (u, ⇠)(t) =
1

2⇡
Sgf(u, ⇠)gu,⇠(t)
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It follows that `(h) can be written as

`(h) = hh, efi

with
ef(t) =

Z

R
F (u, ⇠) du d⇠ =

1

2⇡

Z

R
Sgf(u, ⇠)gu,⇠(t) du d⇠

But then `(h) = hh, fi = hh, efi for all h 2 L2(R), and so f = ef (in the weak sense) and the
inversion formula is proved.

Exercise 27. Read Section 4.2.1 of A Wavelet Tour of Signal Processing.

4.2.3 Choice of the Window

The time frequency localization of the window g can be modified with a scaling. Suppose
that the Heisenberg boxes of the time frequency atoms gu,⇠ have time width �t and frequency
width �!. Let

gs(t) = s
�1/2

g(s�1
t)

be a dilation of g by the time scale s. One can show that if we replace the window g with gs,
then the resulting Heisenberg box has time width s�t and frequency width s

�1
�!. While the

area remains �t�!, the resolution in time is modified by s while the resolution in frequency
is modified by s

�1. Depending on the signal type we may want better localization in time
or frequency, or a balance of both; the parameter s allows us to adjust accordingly while
keeping the time frequency area of each box constant.

In numerical applications, the localized waveforms gu,⇠(t) can only be sampled a finite
number of times, which means the support of the window g must be compact or it must be
restricted to a compact set (as in the case of a Gaussian window). If g has compact support,
then bg must have an infinite support. Since g is symmetric and often g(t) � 0 for all t, bg(!)
will be symmetric with a main “lobe” (bump) centered at ! = 0, which decays to zero with
oscillations; see Figure 10.

The frequency resolution of the windowed Fourier transform is determined by the spread
of bg around ! = 0. Previously we used �! to measure this spread, however the following
three parameters give a more fine grained measure:

• The bandwidth �!, which is defined by:

|bg(�!/2)|2

|bg(0)|2 =
1

2

This measures the energy concentration of bgu,⇠(!) around ! = ⇠.

• The maximum amplitude A of the first side lobes located at ! = ±!0. The important
thing is the side lobe amplitude relative to the amplitude of the central lobe at ! = 0;
this ratio can be measured in decibels:

A = 10 log10
|bg(!0)|2

|bg(0)|2
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Figure 10: The energy spread of bg(!) is measured by its bandwidth and the maximum
amplitude A of the first side lobes, located at ±!0.

Side lobes create echos of the response Sf(u, ⇠) at Sf(u, ⇠ ± !0). If A is small (i.e.,
very negative), then the side lobe magnitude is small relative the main lobe amplitude
and these echos will be negligible relative to the response at ⇠.

• The polynomial exponent p, which gives the asymptotic decay of |bg(!)| for large fre-
quencies,

|bg(!)| = O(|!|�(p+1))

This is important of several localized frequency phenomena occur close together in the
time frequency plane. In this case it can be hard to “unmix” the various frequency
tones unless p is large. We obtain a large p by using a smooth window.

Exercise 28. Read Sections 4.2.2 and 4.2.3 of A Wavelet Tour of Signal Processing.

4.3 Time Frequency Geometry of Instantaneous Frequencies
When listening to music we perceive several frequencies that change with time. This leads
to the notion of an instantaneous frequency, which we define here at the outset.

4.3.1 Instantaneous Frequency

Section 4.4.1 of A Wavelet Tour of Signal Processing

If f : R ! C is complex valued then f(t) can be uniquely represented as

f(t) = a(t)ei✓(t)

where a(t) = |f(t)| is the amplitude of f(t) and ✓(t) 2 [0, 2⇡) is the phase of f(t). In this
case, we define the instantaneous frequency of f(t) as ✓

0(t).
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For real valued signals f : R ! R, we would like to decompose f(t) as

f(t) = ↵(t) cos#(t)

However, this representation is not unique since it has two parameters ↵(t) and #(t) for each
real value f(t). We settle on a particular representation by defining the analytic part of f(t).

A function ha(t) is analytic if

bha(!) = 0, 8! < 0

An analytic function is necessarily complex valued but is entirely characterized by its real
part. Indeed, define h(t) = <[ha(t)] to be the real part of ha(t). Its Fourier transform is:

bh(!) =
bha(!) + bh⇤

a(�!)

2

which in turn yields:

bha(!) =

8
<

:

2bh(!) ! > 0
bh(!) ! = 0
0 ! < 0

If we start with a real valued signal f 2 L1(R) then we define the analytic part fa(t) of
f(t) as the inverse Fourier transform of

bfa(!) =

8
<

:

2 bf(!) ! > 0
bf(!) ! = 0
0 ! < 0

Since the analytic part fa(t) of f(t) is complex valued, it can be decomposed uniquely as

fa(t) = a(t)ei✓(t)

Since f(t) = <[fa(t)] we have that

f(t) = a(t) cos ✓(t)

This representation is uniquely defined because it is derived from the analytic part of f . We
call a(t) the analytic amplitude of f(t) and ✓

0(t) its instantaneous frequency.
As a somewhat simple example we compute the analytic part of the real valued signal

f(t) = a cos(!0t+ ✓0) =
a

2

�
e
i(!0t+✓0) + e

�i(!0t+✓0)
�

Its Fourier transform is:

bf(!) = ⇡a
�
e
i✓0�(! � !0) + e

�i✓0�(! + !0)
�
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If !0 > 0, then the Fourier transform of the analytic part is:

bfa(!) = 2 bf(!) = 2⇡aei✓0�(! � !0), ! � 0

and thus
fa(t) = ae

i(!0t+✓0)

If we replace the constant a with an amplitude function a(t), so that

f(t) = a(t) cos(!0t+ ✓0)

then the Fourier transform of f(t) is:

bf(!) = 1

2

�
e
i✓0ba(! � !0) + e

�i✓0ba(! + !0)
�

If the variations of a(t) are slow compared to the period 2⇡/!0, then it must be that suppba ✓

[�!0,!0]. In this case:

bfa(!) = 2 bf(!) = e
i✓0ba(! � !0), ! � 0

and
fa(t) = a(t)ei(!0t+✓0)

Thus the amplitude is a(t) and the instantaneous frequency is !0.
Let us now consider a slightly more complicated example:

f(t) = a cos(!1t) + a cos(!2t)

In this case the analytic part of the signal is given by:

fa(t) = ae
i!1t + ae

i!2t

= 2a cos

✓
(!1 � !2)t

2

◆
e
i(!1+!2)t/2

Thus the instantaneous frequency is

✓
0(t) =

!1 + !2

2

and the amplitude is

a(t) = 2a

����cos
✓
(!1 � !2)t

2

◆����

The result is unsatisfying because the instantaneous frequency is the average of the frequen-
cies of the two cosine waves. We would have no indication (forgetting the amplitude) that
the signal is not in fact one cosine with frequency (!1 + !2)/2, but rather two separate
cosines.
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More generally, one would like to be able to analyze signals of the form

f(t) =
KX

k=1

ak(t) cos ✓k(t) (21)

where ak(t) and ✓k(t) vary slowly in time. Such decompositions can be used to model
music and other auditory signals. We want to isolate the different amplitudes ak(t) and
instantaneous frequencies ✓

0
k(t). A windowed Fourier transform can help with this.

Exercise 29. Read Section 4.4.1 of A Wavelet Tour of Signal Processing.

Exercise 30. The analytic part xa[n] of a real valued discrete signal x 2 RN is defined by

bxa[n] =

8
<

:

bx[k] k = 0, N/2
2bx[k] 0 < k < N/2
0 N/2 < k < N

(a) Suppose that y 2 CN is a complex valued discrete signal and let yr[n] = <(y[n]) be
the real part of y. Prove that

byr[k] =
by[k] + by⇤[�k]

2

(b) For x 2 RN prove that <(xa) = x.

Exercise 31. Let f(t) = e
i✓(t) and let g be a real, symmetric window function with kgk2 = 1.

(a) Prove that Z

R
|Sf(u, ⇠)|2 d⇠ = 2⇡, 8 u 2 R

(b) Prove that Z

R
⇠|Sf(u, ⇠)|2 d⇠ = 2⇡

Z

R
✓
0(t)|g(t� u)|2 dt, 8 u 2 R

and interpret this result.

Exercise 32. We are going to investigate further the windowed Fourier transform with a
Gaussian window.

(a) Let g�(t) be the Gaussian window:

g�(t) =
1

(2⇡�2)1/4
e
�t2/4�2

which is normalized so that kgk2 = 1 and the time spread of g(t) is �
2
t = �

2. In
practice, even though g(t) has infinite support, we will have to sample it over a finite
interval [�N/2, N/2) of length N . Let g�,N(t) be the restriction of g�(t) to this interval:

g�,N(t) = 1[�N/2,N/2)(t)g�(t)
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Give an upper bound for the error kg� � g�,Nk2 in terms of � and N . Recall our
intuition that the “essential” width of g�(t) is �. If we take N = �, how big is the
bound on the error? Is this error acceptable?

(b) Implement a discrete version of the windowed Fourier transform. Assume that your
signal is x 2 RN with N even. For each 0  k < N , compute the discrete vectors:

g�,k[n] =

(
g�(n) exp

�
2⇡ikn
N

�
0  n < N/2

g�(n�N) exp
�
2⇡ikn
N

�
N/2  n < N

Define S�x[n, k] as:

S�x[n, k] = exp

✓
�
2⇡ikn

N

◆
· (x~ g�,k)[n], 0  n < N, 0  k < N

(You should convince yourself this definition is consistent with the definition above for
signals f). Use your work on the earlier exercises to get a fast implementation with
O(N2 logN) run time. Then analyze the signal f(t) defined as:

f(t) = cos
⇣
⇡

N
t
2
⌘

with a sampling

x[n] =

⇢
f(n) 0  n < N/2
f(n�N) N/2  n < N

Compute the power spectrum of x, which is |bx[k]|2, and the spectrogram PSx[n, k] =
|S�x[n, k]|2. Plot them both and give an interpretation of your results.
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