Math 994-002: Applied and Computational Harmonic Analysis, MSU, Spring 2020

Lecture 07: Time-Frequency Analysis and Windowed Fourier
January 30, 2020
Lecturer: Matthew Hirn

4 Time Meets Frequency

Chapter 4 of A Wavelet Tour of Signal Processing [1].

4.1 Time Frequency Atoms
Section 4.1 of A Wavelet Tour of Signal Processing [1].
A linear time frequency transform correlates the signal f(t) with a dictionary of waveforms

that are concentrated in time and frequency; these waveforms are called time frequency
atoms. Denote a general dictionary of time frequency atoms by:

D= {¢”/}7€Fa ¢7 € LQ(R), ||¢7||2 =1

where T is a (multi)-index set. The time frequency transform of f € L*(R) in the dictionary
D computes

Bf(y) = (f.6,) = / F() () dt

Recall that the Fourier transform of f is:
fA(w) =(f,e,) = / fte ™tdt, ey(t) =™
R

It is not a perfect analogue for the time frequency transform @ since e, ¢ L*(R), but both
transforms analyze f by testing the signal against a family of waveforms. Let us now explore
time-frequency transforms in more detail.

Recall the definitions of the time mean u, frequency mean ¢, time variance o?, and
frequency variance o2 of a function f € L?(R), first defined when we studied the uncertainty
principle in Section 2.4. Apply them to the dictionary D for each time frequency atom ¢.,
and denote the corresponding quantities by

u’)m w’ya Ut(’Y), 0&)(7)

The waveform ¢, is essentially supported in time on an interval of length (), centered
at u.,, while its Fourier transform ¢, is essentially supported in frequency on an interval
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Figure 7: Heisenberg box representing the essential time frequency support of ¢,

of length o,(7), centered at &,. Thus the joint time frequency support of ¢, in the time
frequency plane (t,w) is given by a Heisenberg box centered at (u,,&,) having time width
o(y) and frequency width o,(v); see Figure 7.

The Parseval formula (Theorem 2.12) proves that:

= [rwema = o [ Fee

Thus we see that @ f() only depends upon the values of f(¢) and f(w) in the Heisenberg
box of ¢,. In particular, ®f(y) only measures the frequencies of f in a neighborhood of &,
and it only measures these frequencies in a neighborhood of the time u,. Because of the
uncertainty principle (Theorem 2.18), we know that

oi(7)ow(v) >

DN | —

Thus it is impossible to measure precisely the frequency response f(wg) at the time ty. The
best we can do is measure the time frequency response of f in a Heisenberg box of area 1/2.
Theorem 2.18 proves that the time frequency atoms that achieve this optimal time frequency
localization are given by Gabor functions; we will come back to this point shortly when we
introduce the windowed Fourier transform.

For pattern recognition and machine learning tasks, it often important to construct time
frequency representations that behave well with respect to translations of the signal f(t)
(and in 2D, rotations as well). Define f,(t) = f(t — u) as the translation of f by u, and
notice that:

e /ft—u 1) dt = /f (b u)dt = (f 6 s,

where ¢, ~(t) = ¢,(t —u). This motivates the construction of translation invariant dictio-
naries. A translation invariant dictionary is obtained by starting with a family of generators



{¢+}rer, and augmenting this family with all translates of each time frequency atom ¢.:

D= {quﬁ}uER,veF

Set: B
¢, (1) = ¢5(—t)

The resulting time frequency transform with a translation invariant dictionary is given by:
Of(0.7) = .60 = [ S5 (= u)dt = £ 5,0

It thus corresponds to a filtering of f by the time-frequency waveforms {EW}%F.

Exercise 24. Read Section 4.1 of A Wawvelet Tour of Signal Processing.

4.2 Windowed Fourier Transform

Section 4.2 of A Wavelet Tour of Signal Processing [1].

The Fourier transform f(w) tells us every frequency in the signal f(¢), but it does not tell us
when such frequencies are present. For example, in music we hear the time variation of the
sound frequencies. Similarly, images with vastly different patterns in them may correspond
to different frequencies, localized not over time but space; see the picture of the castle in
Figure 8 for an example.

A natural way to account for these localized structures is to localize the Fourier transform
with a window function. Let g be a real symmetric window ¢(t) = g(—t), which has support
localized around ¢ = 0 (e.g., a Gaussian g(t) = ﬁe‘ﬂ/ 20*) Translations of this window
by u € R, and modulations of this window by the frequency £ € R, yield a Gabor type
dictionary:

D = {guctucer, Guelt) = g(t —u)e’™

The window is normalized so that ||g||2 = 1, which implies that ||g,¢||s = 1 for all (u, ) € R?.
The resulting windowed Fourier transform (also known as the short time Fourier transform,
or Gabor transform) is:

SF(u.€) = {fr gue) = / F(Og(t — w)e € dt

Notice that Sf(u,&) computes a localized version of the Fourier transform of f(¢), in which
the Fourier integral is localized around u by the window g(t — ).
The energy density of the windowed Fourier transform is the spectrogram:

Psf(u,€) = |Sf(u,&)? g(t —u)e létdt




Figure 8: Picture of a castle, taken from Wikipedia. Different regions of the picture have
different patterns, such as the sky, the trees, and the castle itself. These patterns have
different frequency responses, which are spatially localized.

The spectrogram removes the phase of Sf(u,§{) and measures the energy of f in a time
frequency neighborhood of (u, &) specified by the Heisenberg box of g,¢. The size of these
Heisenberg boxes is in fact independent of (u,§), as we now show.

First note that since ¢(t) is even, g, ¢ is centered at u. The variance around u is:

ot = / (t = )2l gue(t)? dt = / 2lg(t) 2 dt

The Fourier transform g of g is real and symmetric because g is real and symmetric. We
also compute the Fourier transform of g, ¢ as (set e¢(t) = €’!):

Jug(w) = m(w)
= (2m) Gy * & (w)
= (27) " (e_y - G) * 270¢(w)
— O )

It follows that g, ¢ is centered at &, and

2 1

1
_ A2 2 7 _ 210, 1\ (2
7t =g [ el = 5 [ W) do

These calculations show that the Heisenberg boxes of g, ¢ centered at (u,&) with an area
0.0, that is independent of the location (u,¢). Thus the windowed Fourier transform has
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Figure 9: Heisenberg boxes of the windowed Fourier time frequency atoms.

the same resolution across the time frequency plane; see Figure 9. This is one of its defining
properties; other time-frequency transforms that we will encounter (e.g., wavelets), will
utilize Heisenberg boxes of different dimensions depending on their location in the time-
frequency plane.

Exercise 25. Read Section 4.2 of A Wavelet Tour of Signal Processing, up to but not
including Section 4.2.1.

4.2.1 Parseval for Windowed Fourier

The approach in this section and the next section follows the treatment in [5, Chapter 3]. For
a more in depth treatment of the windowed Fourier transform and time frequency analysis,
[5] is an excellent resource.

Recall that for a window g € L?(R) the windowed Fourier transform of f € L*(R) is defined
as:

5, (0.6) = [ Ft)glt = we < a

Here we write S, f rather than Sf to emphasize the dependence upon the window choice
g. Up till now we have been a little sloppy in that, while we know the windowed Fourier
transform is well defined pointwise, we do not know if this transform maps f into some
nice functional class. To that end, the next theorem is an analogue of Parseval’s formula
(Theorem 2.12) for the windowed Fourier transform and for windows g in a subclass of L?(R).
It shows that S, : L*(R) — L?*(R?). Like the original Parseval formula it is also extremely
useful.



Theorem 4.1. Let f,h € L*(R) and let g be a real symmetric function with g € L*(R) N
L?(R) and |||l = 1. Then:

<f, h) == %<ng, Sgh>L2(R2)

Proof. We will need another fundamental result from real analysis, which is Young’s inequal-
ity. Suppose that f; € LP(R), f, € LY(R), and

1 1 1
-—+-=—-41
b g r
Then
1f1 % follr < ([ f1llpll f2llq (17)

Now define f¢ as fe(u) = S, f(u, ), so that we think of the windowed Fourier transform
as a function in u with a parameter £. We first show that fe € L?(R) and then compute its
Fourier transform. Additionally, set g¢(t) = g(t)e™"; we can rewrite f¢(u) as (using that g is
symmetric):

fe(u) :/f e %t dt

— —zu{/f z{(u t)d

= e f * ge(u)

It thus follows, using Young’s inequality, that

Il fella = 11 * gellz < llgll1ll f]l2

The Fourier transform of f¢ is computed as:

-~

felw) = flw + Ge(w + &) = flw+)(w)

Let us now compute the inner product between S, f and S,h. Since f¢, he € L*(R) we
can use Parseval’s formula and our computation for their Fourier transform to get:

(SfSh //Sfu{Sh*(uﬁ)dud{

_ % i (/R Fe(w)h (u) du) d¢
= 1 £

Yh*(w + €)[g(w)[? dw de (18)




We would like to switch the order of integration using Fubini. To do so we need to bound:

// (w+ )0 (w+ ) [(w) | du d
= [ [ (e + o+ 9l deds

/|g (/ |f<w+§>|2d5); (/R|ﬁ<w+5>|2dg>é oo

2m)?[lglI21 Il 2]l2 < o0

Thus we can apply Fubini and continuing from (18) we have:

18) = o [ 1P (55 [ T+ O+ €)d¢) av
~ 5 [l (57 [ Fio©dc) o
= (f,h)o- / 1(w)* de

={f.9)
O

The windowed Fourier transform can be extended to any real, symmetric window g €
L?(R) using a density argument. Using this extension, we can also extend Theorem 4.1 to
any real symmetric window g € L*(R).

Corollary 4.2. Let f,h € L*(R) and let g be a real symmetric function with g € L*(R) and
lgll2 = 1. Then:

1
(f,h) = %<ng7 Sgh>L2(R2)
It follows from Theorem 4.1 that S, : L*(R) — L?*(R?) and that it preserves the norm,

up to a factor of v/2x. This is the analog of the Plancheral formula; we collect it in the next
corollary.

Corollary 4.3. Let g € L*(R). The windowed Fourier transform is a linear map S,
L?(R) — L2(R?), and it is also an isometry up to a factor of \/2m:

1
1fll2 = E!\ngllmm

Exercise 26. Prove Corollary 4.2.



References

[1] Stéphane Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way.
Academic Press, 3rd edition, 2008.

[2] Elias M. Stein and Rami Shakarchi. Fourier Analysis: An Introduction. Princeton
Lectures in Analysis. Princeton University Press, 2003.

[3] John J. Benedetto and Matthew Dellatorre. Uncertainty principles and weighted norm
inequalities. Contemporary Mathematics, 693:55-78, 2017.

[4] Yves Meyer. Wavelets and Operators, volume 1. Cambridge University Press, 1993.

[5] Karlheinz Grochenig. Foundations of Time Frequency Analysis. Springer Birkh&user,
2001.



	Sparse Representations
	The Fourier Kingdom
	Linear time-invariant filtering
	Fourier integrals
	Regularity and Decay
	Uncertainty Principle

	Discrete Revolution
	Sampling Analog Signals
	Fourier Series
	Finite Length Signals

	Time Meets Frequency
	Time Frequency Atoms
	Windowed Fourier Transform
	Parseval for Windowed Fourier
	Inversion for Windowed Fourier
	Choice of the Window

	Time Frequency Geometry of Instantaneous Frequencies
	Instantaneous Frequency
	Windowed Fourier Ridges

	Wavelet Transforms


