
Math 994-002: Applied and Computational Harmonic Analysis, MSU, Spring 2020

Lecture 06: Finite Length Signals, DFT, and FFT
January 28, 2019

Lecturer: Matthew Hirn

3.3 Finite Length Signals
In practice we cannot store an infinite number of samples {f(n)}n2Z of a signal f ; instead we
can only keep a finite number of samples, say {f(n)}0n<N . We thus must amend our defini-
tion of the Fourier transform as well as convolution, which will lead to the Discrete Fourier
Transform (DFT) and circular convolution. One thing that will arise is that regardless of
whether the original signal f is periodic, we will be forced to think of the finite sampling
(f(n))0n<N as a discrete periodic signal with period N . This will lead to border effects
which must be accounted for. However, the circular convolution theorem and Fast Fourier
Transform will allow for fast computations of convolution operators.

Let x, y 2 CN , which are vectors of length N , e.g., N samples of a signal f such that
x[n] = f(n) for 0  n < N . The inner product between x and y is:

hx, yi =
N�1X

n=0

x[n]y⇤[n]

We must replace the sinusoids e
it! (t 2 R) and e

in! (n 2 Z), which are continuous in the
frequency variable !, with discrete counterparts. The variable ! is replaced with an index
k with 0  k < N :

ek[n] = exp

✓
2⇡ikn

N

◆
, 0  n, k < N (14)

The Discrete Fourier Transform (DFT) of x is defined as:

bx[k] = hx, eki =
N�1X

n=0

x[n] exp

✓
�
2⇡ikn

N

◆
, 0  k < N

The following theorem shows that the set of vectors {ek}0k<N is an orthogonal basis for
CN .

Theorem 3.6. The family of vectors {ek}0k<N as defined in (14) is orthogonal basis for
CN .

Thus the DFT is a bijection and hence invertible. Since kekk
2 = N for all k, it follows

from Theorem 3.6 that x can be represented in the orthogonal basis {ek}0k<N as:

x[n] =
N�1X

k=0

hx, eki

kekk
2
ek[n] =

1

N

N�1X

k=0

bx[k] exp
✓
2⇡ikn

N

◆

1

This gives the inverse DFT.
We would like a convolution theorem for the DFT similar to the convolution theorem for

L1(R) functions and `1(R) sequences. We define convolution of x, y 2 CN by first extending
them to signals x0, y0 2 `1(R) defined as:

x0[n] =

⇢
x[n] 0  n < N

0 n < 0 or n � N

We then define the convolution of x and y as the convolution of x0 and y0, and keep only
the values with a chance of being nonzero:

x ⇤ y[n] =
X

m2Z

x0[m]y0[n�m], 0  n < 2N � 1

In practice, there will be many times when you want to compute such convolutions. Indeed,
if x and y are discrete samplings of non-periodic signals f and g, respectively, computing
x⇤y will give a discrete approximation for f ⇤g. However, for computational reasons, we will
often not want to compute discrete convolutions directly (more on this in a bit). Indeed, it
will be better to compute such convolutions “in frequency,” which will require a convolution
theorem for the DFT. However, the discrete sinusoids {ek}0k<N are not eigenvectors of
discrete convolution operators Lx = x ⇤ h. The vectors ek are periodic, but the standard
convolution is not; indeed, it extends the vectors x, y to a twice longer vector x ⇤ y. We
therefore define a periodic version of convolution, which is called circular convolution.

To define circular convolution, rather than extending x and y with zeros, we will extend
them with a periodization over N samples:

xp[n] = x[n mod N], n 2 Z

The circular convolution is defined as:

x~ y[n] =
N�1X

m=0

xp[m]yp[n�m]

Note that x~ y 2 CN . One then has the following circular convolution theorem:

Theorem 3.7. If x, y 2 CN , then

[x~ y[k] = bx[k]by[k]

The key to this theorem, and the DFT more generally, is that since the discrete sinusoids
ek are periodic vectors with period N , the DFT treats all vectors x 2 CN as periodic vectors
with period N . This manifests in the convolution theorem by requiring us to utilize circular
convolutions. However, it also means that when computing DFTs, we always need to think
of x as a periodic vector with period N . In particular, seemingly “smooth” vectors such as
x[n] = n actually have very sharp transitions once made periodic, since x[N � 1] = N � 1
and x[N] = x[0] = 0; see Figure 5.

2

Figure 5: Periodization of the ramp vector x[n] = n on RN . Taken from Figure 3.3 of A
Wavelet Tour of Signal Processing.

Remark 3.8. Notice as well, we now have the following correspondences:

• Signals f 2 L2(R) and bf 2 L2(R), otherwise no restrictions.

• Discrete, but infinite samplings a 2 `2(Z) with a[n] = f(n), and ba 2 L2[�⇡, ⇡] a 2⇡
periodic Fourier series in which

ba(!) =
X

n2Z

bf(! � 2⇡n)

• Discrete, finite samplings x 2 CN which must be considered as N -periodic to do any
frequency calculation (e.g., Theorem 3.7). In particular, if

x[n] =
X

p2Z

a[n� pN]

then bx 2 CN with
bx[k] = ba(2⇡k/N) (see Exercise 22)

Thus a discrete, but infinite sampling of f in time/space periodizes its Fourier transform,
possibly leading to aliasing. A finite, discrete sampling in frequency also periodizes the
signal in time/space, leading to possible border effects. We must account for both of these
in practice.

The circular convolution theorem will be very important for opening up fast algorithms
for computing x ~ y. This will be made possible by the Fast Fourier Transform (FFT),
which we now describe. To motivate the algorithm, recall the DFT:

bx[k] =
N�1X

n=0

x[n] exp

✓
�
2⇡ikn

N

◆
, 0  k < N

and observe that it requires N2 (complex) multiplications and additions (N for each k). The
FFT algorithm reduces this to O(N log2 N).

The FFT algorithm works through a divide and conquer approach; in these notes I will
describe the radix-2 decimation in time (DIT) algorithm. This is a recursive algorithm.

3

Given x we divide the DFT summation into two sums, one for the even indices of x and one
for the odd indices of x:

bx[k] =
N/2�1X

n=0

x[2n] exp

✓
�2⇡ik(2n)

N

◆
+

N/2�1X

n=0

x[2n+ 1] exp

✓
�2⇡ik(2n+ 1)

N

◆

=
N/2�1X

n=0

x[2n] exp

✓
�2⇡ikn

N/2

◆
+ e

�2⇡ik/N

N/2�1X

n=0

x[2n+ 1] exp

✓
�2⇡ikn

N/2

◆

The second line looks like the sum of two DFTs of length N/2 signals. Indeed, define
xe, xo 2 RN/2 as:

xe[n] = x[2n], 0  n < N/2

xo[n] = x[2n+ 1], 0  n < N/2

and notice that we have

bxe[k] =
N/2�1X

n=0

x[2n] exp

✓
�2⇡ikn

N/2

◆
, 0  k < N/2

bxo[k] =
N/2�1X

n=0

x[2n+ 1] exp

✓
�2⇡ikn

N/2

◆
, 0  k < N/2

This allows us to recover bx[k] for 0  k < N/2 as:

bx[k] = bxe[k] + e
�2⇡ik/Nbxo[k], 0  k < N/2 (15)

For the frequencies N/2  k < N , we use the fact that the DFT is periodic and observe that

bxe[k +N/2] = bxe[k] and bxo[k +N/2] = bxo[k]

We thus obtain:

0  k < N/2, bx[k +N/2] = bxe[k] + e
�2⇡i(k+N/2)/Nbxo[k]

= bxe[k]� e
�2⇡ik/Nbxo[k] (16)

Putting together (15) and (16) we obtain bx[k] for all 0  k < N . Notice that already we
have reduced computations. Indeed, the one step algorithm proceeds by first dividing x

into even and odd indices signals, computing the two length N/2 DFTs, and recombining
as above. The two length N DFTs cost 2(N/2)2 = N

2
/4 multiplications and additions, and

the combination costs N additions and multiplications. Thus we have replaced N
2 complex

multiplications and additions with N
2
/2 +N complex multiplications and additions, which

is already better for N � 3.

4

Figure 6: Recursive subdivision scheme of the FFT algorithm for N = 8.

Now for simplicity, suppose N = 2p. The O(N log2 N) FFT algorithm is obtained by
recursively subdividing the original signal x, according to the same procedure as outlined
above into “even” and “odd” components, until we have N signals of length one; Figure 6
illustrates the idea for N = 8. The algorithm then “computes” N length one DFTs - notice
that these just return the value of each length one signal, so no computation is actually
performed. The algorithm then forms N/2 length two DFTs the next level up by combining
the pairs of length one DFTs that have the same parent signal, and multiplying the “odd”
length one signal by the appropriate complex value before combination. At each level we
incur a cost of O(N), and there are p = log2 N levels; thus the total cost of the algorithm is
O(N log2 N).

The FFT algorithm is remarkable for turning an O(N2) calculation into an O(N logN)
calculation with no loss of accuracy. For this reason it is a pillar of digital signal processing.
However, it is fundamentally an algebraic property of the DFT, based on symmetries. As
such, the algorithm is “fragile,” and in particular, if you do not uniformly sample your signal
f , you cannot apply the FFT algorithm. That however is a discussion for another day (or
class).

The FFT algorithm allows us to compute convolutions x ⇤ y fast. Suppose the x, y 2 CN

as usual; if we compute x⇤y directly it will cost us O(N2) calculations. In order to calculate
the non-circular convolution faster, we can use the circular convolution Theorem 3.7, which
will allow us to leverage the FFT algorithm. The main idea is that instead of computing
x ⇤ y directly, we compute bx and by, each costing O(N logN) calculations, then we compute
the multiplication bx[k]by[k] for 0  k < N , costing O(N) calculations, and then we compute
the inverse Fourier transform of (bx[k]by[k])0k<N with another FFT, which costs O(N logN)
calculations; the total run time of the algorithm if O(N logN), which in practice (depending

5

upon the exact FFT algorithm you use) will be better for N � 32. One thing that we
have not addressed though, is that the convolution theorem for finite length signal applies
to circular convolution. If we do not account for this, we will run into border effects since we
will be computing x~ y instead of x ⇤ y. To fix this issue, we zero pad x and y by defining:

x0[n] =

⇢
x[n] 0  n < N

0 N  n < 2N

The signal x0 2 C2N and is just the signal x but with N zeros appended to the back of it.
One can then verify that:

x0 ~ y0[n] = x ⇤ y[n], 0  n < 2N

Thus we apply the fast FFT based algorithm to x0 and y0 (rather than x and y) to obtain
x ⇤ y in O(N logN) time.

Exercise 19. Read Section 3.3 of A Wavelet Tour of Signal Processing.

Exercise 20. Read Section 3.4 of A Wavelet Tour of Signal Processing.

Exercise 21. Let bx[k] be the DFT of a finite signale x 2 CN . Define a signal y 2 C2N by:

by[N/2] = by[3N/2] = bx[N/2]

and

by[k] =

8
<

:

2bx[k] 0  k < N/2
0 N/2 < k < 3N/2
2bx[k �N] 3N/2 < k < 2N

Prove that y is an interpolation of x that satisfies y[2n] = x[n] for all 0  n < N .

Exercise 22. We want to compute numerically the Fourier transform of f(t). Let a[n] =
f(n) for n 2 Z be the countably infinite discrete sampling of f and let x 2 CN be the
periodization of a over the period of length N :

x[n] =
X

p2Z

a[n� pN]

(a) Prove that the DFT of x is related to the Fourier series of a and to the Fourier transform
of f by the following formula:

bx[k] = ba(2⇡k/N) =
X

`2Z

bf
✓
2⇡k

N
� 2⇡`

◆

(b) Suppose that |f(t)| and | bf(!)| are negligible when t /2 [�t0, t0] and ! /2 [�!0,!0].
Relate N to t0 and !0 so that one can compute an approximate value of bf(!) for all
! 2 R by interpolating the samples bx 2 CN . It is possible to compute exactly bf(!)
with such an interpolation formula?

6

Exercise 23. We are going to implement the FFT and fast convolution algorithms:

(a) Implement the DFT algorithm (programming language of your choice). Record the
runtime for many values of N , and plot it as a function of N . Do you see the quadratic
scaling? Turn in your code and plot(s).

(b) Make precise the O(N logN) FFT algorithm described above and implement it on
your own for N = 2p. Test the algorithm for accuracy by comparing its outputs to
the outputs of your DFT algorithm. Test the algorithm for speed by comparing the
runtime for numerous values of N to the runtimes your recorded for the DFT. For
which value of N does your FFT algorithm become faster? Turn in your code, at least
one output showing that the DFT and FFT codes produce the same results, and a
plot of the FFT runtimes as a function of N (you can combine this plot with the DFT
plot).

(c) Using either your own FFT and inverse FFT code, or built in code (in Matlab or
Python, for example) since you are not required to write your own inverse FFT code,
implement an algorithm to compute x⇤y (for x, y 2 CN) in O(N logN) time. Verify the
accuracy by comparing against convolution code that computes x ⇤ y directly (either
your own code, or built in code), and compare the runtimes. For which N is your
O(N logN) convolution code faster?

7

References
[1] Stéphane Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way.

Academic Press, 3rd edition, 2008.

[2] Elias M. Stein and Rami Shakarchi. Fourier Analysis: An Introduction. Princeton
Lectures in Analysis. Princeton University Press, 2003.

[3] John J. Benedetto and Matthew Dellatorre. Uncertainty principles and weighted norm
inequalities. Contemporary Mathematics, 693:55–78, 2017.

[4] Yves Meyer. Wavelets and Operators, volume 1. Cambridge University Press, 1993.

[5] Karlheinz Gröchenig. Foundations of Time Frequency Analysis. Springer Birkhäuser,
2001.

	Sparse Representations
	The Fourier Kingdom
	Linear time-invariant filtering
	Fourier integrals
	Regularity and Decay
	Uncertainty Principle

	Discrete Revolution
	Sampling Analog Signals
	Fourier Series
	Finite Length Signals

	Time Meets Frequency
	Time Frequency Atoms
	Windowed Fourier Transform
	Parseval and Inversion for Windowed Fourier
	Choice of the Window

	Time Frequency Geometry of Instantaneous Frequencies

