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2.4 Uncertainty Principle
Section 2.8.2 of A Wavelet Tour of Signal Processing [1].

The previous section motivates the following question. Can we construct a function f that
is well localized in both time and frequency, and if so, how well localized can it be simulta-
neously in both domains? We know that a Dirac 6(¢) is well localized in space, but é(w) = 1
for all w, and similarly e¢(t) = €*' is not well localized in space, but €(w) = d(w — &). From
the previous section, we know that |f(w)| decays quickly as w — oo only if f is very regular.
But if f is very regular, it cannot have sharp transitions and thus cannot decay too fast in
space as t — o0.

Similarly, to adjust the spread of a function f while keeping its total energy constant, we

can dilate by a factor s > 0 with suitable normalization:

fs(t) = sfl/zf(sflt)

If s < 1, then the spread of f is decreased, while if s > 1 the spread of f is increased.
Regardless, the normalization s~/2 insures that || fs||2 = || f||. The Fourier transform of f,
is:

fs(w) = Vs f(sw)
We see that the dilation has the opposite effect on f In particular, if s < 1, then the spread
of f is increased, while if s > 1, the spread of f is decreased. We thus begin to see there is
a trade-off between time and frequency localization.

Time and frequency localizations are limited by the (Heisenberg) uncertainty principle,
which you may have seen in quantum mechanics as the uncertainty on the position and
momentum of a free particle. We will use the framework of quantum mechanics to motivate
the following discussion, although it will hold for general functions f € L*(R). The state
of a one-dimensional particle is described by a wave function f € L*(R). The probability
density function for the location of this particle to be at ¢ is

1 2
W|f(t)|

while the probability density function for its momentum to be w is
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It follows that the average location of the particle is given by

1 2
u= W/Rﬂfw di

while its average momentum is:

1 N
= W/Rwlf(wwdw

The variance around the average location w is

§
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and the variance around the average momentum is:

/R (t — w)? IO dt
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The variances measure our uncertainty as to the location and momentum of the particle. In
particular, the larger the variance, the less certain we are. As one may know from quantum
mechanics, we cannot know the position and momentum of a particle simultaneously. The
following theorem makes this statement precise

Theorem 2.18 (Uncertainty Principle). The temporal variance and the frequency variance
of a function f € L*(R) must satisfy

| =

olo? >
We obtain equality if and only if there exists (u,&,a,b) € R? x C? such that
F(t) = ae®tt="" " Real(h) > 0 (8)

Functions (8) are called Gabor functions.

Proof. The proof is relatively simple for functions f € S(R), which are Schwartz class
functions. The Schwartz class is an important class of functions to know, so we define it
now. The space S(R) consists of all infinitely differentiable functions f : R — C such that
f™(t) is rapidly decreasing for all n > 0, that is

sup [t f™ ()| < 00, Vm,n >0
teR
An example of a Schwartz class function is the family of functions defined in (8). The

Fourier transform, as defined for L'(R) functions in (1), is also well defined for f € S(R),
and furthermore F : S(R) — S(R).



Now to the proof. First, note that if the time and frequency averages of f are u and &
respectively, then the time and frequency averages of e~ f(t+u) are zero. Thus it is sufficient
to prove the theorem for u = £ = 0. First note that if we write f(t) = fi(t) + if2(t), then

f(#) = fi(t) + if5(0),
FOF = fi(t)* + fo(t)
and

%If(lt)l2 =20 fi(t) + 2£2(0) f5(8) = [0 F (1) + f(£) 7 (2)

We then have using integration by parts:

117 = / P

0 b/c fES(R)

_ / L)1) + F(0) 1 (8)] dt

Taking the absolute value of both sides yields and using Hélder’s inequality (Cauchy-Schwarz)
we have:

112 = [ droro+ oo
<9 / LI 0] de

<[ eise |2dt> (/|f |2dt)
=21l [ !f’(t)|2dt)2 i

Now use the Plancheral formula (Corollary 2.13) and the identity F(f')(w) = iwf(w) to

obtain 1 l
| ([ir@pa) =—=([FwPE)" =1l

A2 < 20l flloel fllow

from which the desired inequality follows.

For the second part, if u = & = 0, one can verify that equality holds for f(t) = ae™" . Now
suppose equality holds. Then we must have equality when we applied the Cauchy-Schwarz
inequality. But this can only happen if the two functions are equal, up to a constant, which
in this case means that

Thus we obtain:

f'(t) = Btf(t)



The solutions to this differential equation are f(t) = aeP’?. Setting —b = £/2 we obtain

(8).

The proof can be extended to any L?(R) function; see for example [3]. O

The uncertainty principle does not preclude a function having compact support in both
time an frequency. However, this is also impossible.

~

Theorem 2.19. Let f € LY(R)UL*(R). If f # 0 has a compact support, then f(w) cannot

be zero on a whole interval. Similarly, if f # 0 has compact support, then f(t) cannot be
zero on a whole interval.

Proof. We prove the second statement. Suppose that f has compact support, which is
included in the interval [—b,b]. Then using the Fourier inversion formula, we have

£ = 5 / Flepet (9)

Suppose by contradiction that f(¢) = 0 for all ¢ € [¢,d]. Set to = (c+ d)/2 and calculate the
n'® derivative of f at t, as:

1 [~ d . 1 (b ‘
O — (n) t — _/ iwt d _ / . n_iwto d
f ( O> 27'(' —b f(w) dte t=to v 271' —b f(W)(Zw) ¢ w

Now expand e™! as an infinite Taylor series around #g:

o (1w)"
VteR, =) ettt —to)"
n:
n=0

Now go back to (9) and plug in the Taylor series for ™!,

sy =3 o L [ e o =

n=0 _ J/
-

0

~

But now we have f(t) = 0 for all ¢ € R, which implies that f(w) = 0 for all w € R; but this
is a contradiction. O

Exercise 10. Read Section 2.3 of A Wawvelet Tour of Signal Processing.
Exercise 11. Read Section 2.4 of A Wawvelet Tour of Signal Processing.

Exercise 12. For any A > 0, construct a function f such that o,(f) > A and o,,(f) > A.

3 Discrete Revolution

Chapter 3 of A Wavelet Tour of Signal Processing [1].
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3.1 Sampling Analog Signals
Section 3.1 of A Wavelet Tour of Signal Processing [1].

Signals f : R — C must be discretized to be stored on a computer. In practice we can only
keep a finite amount of information, which means that we can only keep a finite number
of samples from f. We will return to this setting in a bit. For now we consider a discrete,
countably infinite number of samples from f, given by:

Samples = {f(ns)}nez, s ' =sampling rate (10)

In particular s = 1 means we sample every integer, s = 2 means we sample every other
integer, while s = 1/2 means we sample every half integer, and so on.

Assume that f is continuous, so that (10) is well defined. We want to know when we can
recover f(t) for all ¢ € R from the samples { f(ns)}nez. We represent these discrete samples
as a sum of weighted Diracs:

fa(t) =) f(ns)s(t — ns)

neL

The signal f; : R — C is defined for all £ € R but only takes nonzero values at ¢t = ns for
n € Z. It is thus a discrete sampling of f; see Figure 2.

J®
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(a) Function f(t) (b) Discrete function samples f;(t)

Figure 2: A continuous function and its discrete sampled version. Taken from Figure 3.1 of
A Wawvelet Tour of Signal Processing.

The Fourier transform of fy(t) is:

Fatw) = 3 flns)eins

nel

Notice this is a Fourier series; we’ll come back to this point later. We first compute fd(w) a
second way, which will illuminate the relationship between f(w) and fy(w).

Theorem 3.1. The Fourier transform of fu(t) is:

i) =1 37 (w- 27)

kEZ
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Proof. Define the Dirac comb (see also (6)) as:
c(t) = 5(t — ns)
neZL

We can rewrite fy(t) as the multiplication of f(¢) with ¢(t):
fa(t) = f(t)e(?)

Using the convolution theorem (Theorem 2.9), we have:
- 1~
falw) = ﬂf % c(w)

But the Poisson Formula (Theorem 2.11) proves:

- i(e- 2

keZ

The theorem then follows immediately. O]

Theorem 3.1 proves that the Fourier transform fAd(w) is obtained by making the Fourier
transform f(w) 27 /s periodic. Thus sampling f “periodizes” its frequency response. Figure
3 illustrates the point. The main point here is that if supp f C [—7/s,m/s], then f(t) can
be recovered from fy(t); if f is supported outside of [—m/s,7/s] then aliasing may occur,
in which case we cannot recover f(t) from fy(¢). The next theorem makes precise the first

point.
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(a) Fourier transform f(w) of the (b) Fourier transform fd(w) of the
signal from Figure 2 sampled signal from Figure 2

Figure 3: The Fourier transforms of f(w) and fy(w). Taken from Figure 3.1 of A Wavelet
Tour of Signal Processing.

Theorem 3.2 (Whittaker—Nyquist—Kotelnikov—Shannon Sampling Theorem). If suppfA C
[—7/s,m/s|, then
f(t) = faxos(t) = Z f(ns)ps(t — ns)
ne”Z

where o
oty = ket



~ ~ ~

Proof. If n # 0, then the support of f(w—2nm/s) does not intersect with f(w) since f(w) =0
for |w| > m/s. Thus by Theorem 3.1 (see also Figure 3)

fuwr =T <

™

The Fourier transform of ¢4(t) is

~

bs(W) = 81 {_r/s7/6 (W)

Therefore R R R
fw) = ds(w) fa(w)

Now apply the inverse Fourier transform both sides:

F(£) = o x falt) = b % Y f(ns)d(t —ns) = > f(ns)ds(t — ns)

neL nez

]

~

If the support of f(w) is not included in [—7/s,7/s] then aliasing can occur, which

~

is what happens when the supports of f(w — 2k7m/s) overlap for several k. In this case
]?(w) =+ as(w)fd(w), and the sampling theorem (Theorem 3.2) does not apply and we cannot
recover f(t) from fy(t). Indeed, the Fourier transform of f; * ¢s(¢) may be very different
than the Fourier transform of f(t¢), in which case f;* ¢s(t) will look very different than f(¢).
See Figure 4 for an illustration. R

A bandlimited signal is a function f such that supp f C [—R, R] for some R > 0. The
sampling theorem (Theorem 3.2) proves that such signals can be sampled with a discrete
set of samples for an appropriate sampling rate s = 7/ R. However, by Theorem 2.15, such
signals must necessarily be C*. We will want to be able to process other signals as well.
We can do so by first filtering f with some filter h (or a family of filters), which computes
f=h(t). If supp h C [—R, R] then f x h(t) is bandlimited as well, with the same frequency
range. We can thus sample f % h(t) according to Theorem 3.2. In general we are going
to need more than one filter, and each filter will need to be localized in some part of the
frequency axis. This will lead us to Gabor filters (windowed Fourier) and wavelets, amongst
other filter families.

Exercise 13. Read Section 3.1 of A Wawvelet Tour of Signal Processing.
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Figure 4: (a) Signal f and its Fourier transform 7. (b) Aliasing produced by an overlapping
of flw—2km /s) for different k, shown with dashed lines. (c¢) Low pass filter ¢ and its Fourier
transform. (d) The filtering f % ¢5(t) which creates a low frequency signal that is different
from f. Notice that non-differentiable singular points are smoothed out, and that the high
frequency oscillations on the positive horizontal axis are replaced with a single bump. Taken
from Figure 3.2 of A Wawvelet Tour of Signal Processing.
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