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2.4 Uncertainty Principle
Section 2.3.2 of A Wavelet Tour of Signal Processing [1].

The previous section motivates the following question. Can we construct a function f that
is well localized in both time and frequency, and if so, how well localized can it be simulta-
neously in both domains? We know that a Dirac �(t) is well localized in space, but b�(!) = 1
for all !, and similarly e⇠(t) = e

i⇠t is not well localized in space, but be⇠(!) = �(!� ⇠). From
the previous section, we know that | bf(!)| decays quickly as ! ! 1 only if f is very regular.
But if f is very regular, it cannot have sharp transitions and thus cannot decay too fast in
space as t ! 1.

Similarly, to adjust the spread of a function f while keeping its total energy constant, we
can dilate by a factor s > 0 with suitable normalization:

fs(t) = s
�1/2

f(s�1
t)

If s < 1, then the spread of f is decreased, while if s > 1 the spread of f is increased.
Regardless, the normalization s

�1/2 insures that kfsk2 = kfk2. The Fourier transform of fs
is:

bfs(!) =
p
s bf(s!)

We see that the dilation has the opposite effect on bf . In particular, if s < 1, then the spread
of bf is increased, while if s > 1, the spread of bf is decreased. We thus begin to see there is
a trade-off between time and frequency localization.

Time and frequency localizations are limited by the (Heisenberg) uncertainty principle,
which you may have seen in quantum mechanics as the uncertainty on the position and
momentum of a free particle. We will use the framework of quantum mechanics to motivate
the following discussion, although it will hold for general functions f 2 L2(R). The state
of a one-dimensional particle is described by a wave function f 2 L2(R). The probability
density function for the location of this particle to be at t is

1

kfk2 |f(t)|
2

while the probability density function for its momentum to be ! is
1

2⇡kfk2 |
bf(!)|2
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It follows that the average location of the particle is given by

u =
1

kfk2

Z

R
t|f(t)|2 dt

while its average momentum is:

⇠ =
1

2⇡kfk2

Z

R
!| bf(!)|2 d!

The variance around the average location u is

�
2
t =

1

kfk2

Z

R
(t� u)2|f(t)|2 dt

and the variance around the average momentum is:

�
2
! =

1

2⇡kfk2

Z

R
(! � ⇠)2| bf(!)|2 d!

The variances measure our uncertainty as to the location and momentum of the particle. In
particular, the larger the variance, the less certain we are. As one may know from quantum
mechanics, we cannot know the position and momentum of a particle simultaneously. The
following theorem makes this statement precise

Theorem 2.18 (Uncertainty Principle). The temporal variance and the frequency variance

of a function f 2 L2(R) must satisfy

�
2
t �

2
! � 1

4

We obtain equality if and only if there exists (u, ⇠, a, b) 2 R2 ⇥ C2
such that

f(t) = ae
i⇠t�b(t�u)2

, Real(b) > 0 (8)

Functions (8) are called Gabor functions.

Proof. The proof is relatively simple for functions f 2 S(R), which are Schwartz class
functions. The Schwartz class is an important class of functions to know, so we define it
now. The space S(R) consists of all infinitely differentiable functions f : R ! C such that
f
(n)(t) is rapidly decreasing for all n � 0, that is

sup
t2R

|t|m|f (n)(t)| < 1, 8m,n � 0

An example of a Schwartz class function is the family of functions defined in (8). The
Fourier transform, as defined for L1(R) functions in (1), is also well defined for f 2 S(R),
and furthermore F : S(R) ! S(R).
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Now to the proof. First, note that if the time and frequency averages of f are u and ⇠

respectively, then the time and frequency averages of e�i⇠t
f(t+u) are zero. Thus it is sufficient

to prove the theorem for u = ⇠ = 0. First note that if we write f(t) = f1(t) + if2(t), then
f
0(t) = f

0
1(t) + if

0
2(t),

|f(t)|2 = f1(t)
2 + f2(t)

2

and
d

dt
|f(t)|2 = 2f1(t)f

0
1(t) + 2f2(t)f

0
2(t) = f

⇤(t)f 0(t) + f(t)f 0⇤(t)

We then have using integration by parts:

kfk2 =
Z

R
|f(t)|2 dt

= t|f(t)|2
���
+1

�1| {z }
0 b/c f2S(R)

�
Z

R
t
d

dt
|f(t)|2 dt

= �
Z

R
t[f ⇤(t)f 0(t) + f(t)f 0⇤(t)] dt

Taking the absolute value of both sides yields and using Hölder’s inequality (Cauchy-Schwarz)
we have:

kfk2 =
����
Z

R
t[f ⇤(t)f 0(t) + f(t)f 0⇤(t)] dt

����

 2

Z

R
|t||f(t)||f 0(t)| dt

 2

✓Z

R
t
2|f(t)|2 dt

◆ 1
2
✓Z

R
|f 0(t)|2 dt

◆ 1
2

= 2kfk�t

✓Z

R
|f 0(t)|2 dt

◆ 1
2

Now use the Plancheral formula (Corollary 2.13) and the identity F(f 0)(!) = i! bf(!) to
obtain ✓Z

R
|f 0(t)|2 dt

◆ 1
2

=
1p
2⇡

✓Z

R
!
2| bf(!)|2

◆ 1
2

= kfk�!

Thus we obtain:
kfk2  2kfk�tkfk�!

from which the desired inequality follows.
For the second part, if u = ⇠ = 0, one can verify that equality holds for f(t) = ae

�bt2 . Now
suppose equality holds. Then we must have equality when we applied the Cauchy-Schwarz
inequality. But this can only happen if the two functions are equal, up to a constant, which
in this case means that

f
0(t) = �tf(t)
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The solutions to this differential equation are f(t) = ae
�t2/2. Setting �b = �/2 we obtain

(8).
The proof can be extended to any L2(R) function; see for example [3].

The uncertainty principle does not preclude a function having compact support in both
time an frequency. However, this is also impossible.

Theorem 2.19. Let f 2 L1(R) [ L2(R). If f 6= 0 has a compact support, then bf(!) cannot

be zero on a whole interval. Similarly, if bf 6= 0 has compact support, then f(t) cannot be

zero on a whole interval.

Proof. We prove the second statement. Suppose that bf has compact support, which is
included in the interval [�b, b]. Then using the Fourier inversion formula, we have

f(t) =
1

2⇡

Z b

�b

bf(!)ei!t d! (9)

Suppose by contradiction that f(t) = 0 for all t 2 [c, d]. Set t0 = (c+ d)/2 and calculate the
n

th derivative of f at t0 as:

0 = f
(n)(t0) =

1

2⇡

Z b

�b

bf(!) d
dt
e
i!t

���
t=t0

d! =
1

2⇡

Z b

�b

bf(!)(i!)nei!t0 d!

Now expand e
i!t as an infinite Taylor series around t0:

8 t 2 R, e
i!t =

1X

n=0

(i!)n

n!
e
i!t0(t� t0)

n

Now go back to (9) and plug in the Taylor series for e
i!t,

f(t) =
1X

n=0

(t� t0)n

n!

1

2⇡

Z b

�b

bf(!)(i!)nei!t0 d!
| {z }

0

= 0

But now we have f(t) = 0 for all t 2 R, which implies that bf(!) = 0 for all ! 2 R; but this
is a contradiction.

Exercise 10. Read Section 2.3 of A Wavelet Tour of Signal Processing.

Exercise 11. Read Section 2.4 of A Wavelet Tour of Signal Processing.

Exercise 12. For any A > 0, construct a function f such that �t(f) > A and �!(f) > A.

3 Discrete Revolution
Chapter 3 of A Wavelet Tour of Signal Processing [1].
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3.1 Sampling Analog Signals
Section 3.1 of A Wavelet Tour of Signal Processing [1].

Signals f : R ! C must be discretized to be stored on a computer. In practice we can only
keep a finite amount of information, which means that we can only keep a finite number
of samples from f . We will return to this setting in a bit. For now we consider a discrete,
countably infinite number of samples from f , given by:

Samples = {f(ns)}n2Z, s
�1 = sampling rate (10)

In particular s = 1 means we sample every integer, s = 2 means we sample every other
integer, while s = 1/2 means we sample every half integer, and so on.

Assume that f is continuous, so that (10) is well defined. We want to know when we can
recover f(t) for all t 2 R from the samples {f(ns)}n2Z. We represent these discrete samples
as a sum of weighted Diracs:

fd(t) =
X

n2Z

f(ns)�(t� ns)

The signal fd : R ! C is defined for all t 2 R but only takes nonzero values at t = ns for
n 2 Z. It is thus a discrete sampling of f ; see Figure 2.

(a) Function f(t) (b) Discrete function samples fd(t)

Figure 2: A continuous function and its discrete sampled version. Taken from Figure 3.1 of
A Wavelet Tour of Signal Processing.

The Fourier transform of fd(t) is:

bfd(!) =
X

n2Z

f(ns)e�ins!

Notice this is a Fourier series; we’ll come back to this point later. We first compute bfd(!) a
second way, which will illuminate the relationship between bf(!) and bfd(!).

Theorem 3.1. The Fourier transform of fd(t) is:

bfd(!) =
1

s

X

k2Z

bf
✓
! � 2k⇡

s

◆
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Proof. Define the Dirac comb (see also (6)) as:

c(t) =
X

n2Z

�(t� ns)

We can rewrite fd(t) as the multiplication of f(t) with c(t):

fd(t) = f(t)c(t)

Using the convolution theorem (Theorem 2.9), we have:

bfd(!) =
1

2⇡
bf ⇤ bc(!)

But the Poisson Formula (Theorem 2.11) proves:

bc(!) = 2⇡

s

X

k2Z

�

✓
! � 2⇡k

s

◆

The theorem then follows immediately.

Theorem 3.1 proves that the Fourier transform bfd(!) is obtained by making the Fourier
transform bf(!) 2⇡/s periodic. Thus sampling f “periodizes” its frequency response. Figure
3 illustrates the point. The main point here is that if supp bf ✓ [�⇡/s, ⇡/s], then f(t) can
be recovered from fd(t); if bf is supported outside of [�⇡/s, ⇡/s] then aliasing may occur,
in which case we cannot recover f(t) from fd(t). The next theorem makes precise the first
point.

(a) Fourier transform bf(!) of the
signal from Figure 2

(b) Fourier transform bfd(!) of the
sampled signal from Figure 2

Figure 3: The Fourier transforms of bf(!) and bfd(!). Taken from Figure 3.1 of A Wavelet

Tour of Signal Processing.

Theorem 3.2 (Whittaker–Nyquist–Kotelnikov–Shannon Sampling Theorem). If supp bf ✓
[�⇡/s, ⇡/s], then

f(t) = fd ⇤ �s(t) =
X

n2Z

f(ns)�s(t� ns)

where

�s(t) =
sin(⇡t/s)

⇡t/s
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Proof. If n 6= 0, then the support of bf(!�2n⇡/s) does not intersect with bf(!) since bf(!) = 0
for |!| > ⇡/s. Thus by Theorem 3.1 (see also Figure 3)

bfd(!) =
bf(!)
s

, |!|  ⇡

s

The Fourier transform of �s(t) is

b�s(!) = s1[�⇡/s,⇡/s](!)

Therefore
bf(!) = b�s(!) bfd(!)

Now apply the inverse Fourier transform both sides:

f(t) = �s ⇤ fd(t) = �s ⇤
X

n2Z

f(ns)�(t� ns) =
X

n2Z

f(ns)�s(t� ns)

If the support of bf(!) is not included in [�⇡/s, ⇡/s] then aliasing can occur, which
is what happens when the supports of bf(! � 2k⇡/s) overlap for several k. In this case
bf(!) 6= b�s(!) bfd(!), and the sampling theorem (Theorem 3.2) does not apply and we cannot
recover f(t) from fd(t). Indeed, the Fourier transform of fd ⇤ �s(t) may be very different
than the Fourier transform of f(t), in which case fd ⇤�s(t) will look very different than f(t).
See Figure 4 for an illustration.

A bandlimited signal is a function f such that supp bf ✓ [�R,R] for some R > 0. The
sampling theorem (Theorem 3.2) proves that such signals can be sampled with a discrete
set of samples for an appropriate sampling rate s = ⇡/R. However, by Theorem 2.15, such
signals must necessarily be C1. We will want to be able to process other signals as well.
We can do so by first filtering f with some filter h (or a family of filters), which computes
f ⇤ h(t). If suppbh ✓ [�R,R] then f ⇤ h(t) is bandlimited as well, with the same frequency
range. We can thus sample f ⇤ h(t) according to Theorem 3.2. In general we are going
to need more than one filter, and each filter will need to be localized in some part of the
frequency axis. This will lead us to Gabor filters (windowed Fourier) and wavelets, amongst
other filter families.

Exercise 13. Read Section 3.1 of A Wavelet Tour of Signal Processing.
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Figure 4: (a) Signal f and its Fourier transform bf . (b) Aliasing produced by an overlapping
of bf(!�2k⇡/s) for different k, shown with dashed lines. (c) Low pass filter �s and its Fourier
transform. (d) The filtering f ⇤ �s(t) which creates a low frequency signal that is different
from f . Notice that non-differentiable singular points are smoothed out, and that the high
frequency oscillations on the positive horizontal axis are replaced with a single bump. Taken
from Figure 3.2 of A Wavelet Tour of Signal Processing.
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