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Lecture 02: The Fourier transform on L1(R)
January 14, 2019

Lecturer: Matthew Hirn

2.2 Fourier integrals
Section 2.2 of A Wavelet Tour of Signal Processing [1].

The Fourier transform is an operator F that maps a function f(u) to another function bf(!),
which is defined as:

F(f)(!) = bf(!) =
Z

R
f(t)e�i!t dt (1)

We will start by trying to understand what restrictions we need to place on f in order for
this to make sense. In particular, if f is in some well defined space of functions, we will
ask, does that imply bf is in some other well defined space of functions? We will start by
considering the Lp spaces of functions. To that end, define:

Lp(R) =
⇢
f : R ! C :

Z

R
|f(t)|p dt < +1

�
, 0 < p < 1

The space Lp(R) is a Banach space with norm:

kfkp =
✓Z

R
|f(t)|p dt

◆ 1
p

The space L2(R) is special, as it is in fact a Hilbert space with inner product

hf, gi =
Z

R
f(t)g⇤(t) dt

where we use g⇤(t) to denote the complex conjugate of g(t). We also define L1(R). Set:

kfk1 = ess sup
t2R

|f(t)|

The value kfk1 is the smallest number M , 0  M  +1, such that |f(t)|  M for almost
every t 2 R; if f is continuous, it is the smallest number M such that |f(t)|  M for all
t 2 R. It thus measures whether f is bounded or not. The space L1(R) is the space of
bounded functions:

L1(R) = {f : kfk1 < +1}
We then have:
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Proposition 2.1. If f 2 L1(R), then bf 2 L1(R).

Proof. Suppose f 2 L1(R). We have:

| bf(!)| =
����
Z

R
f(t)e�i!t dt

���� 
Z

R
|f(t)e�i!t| dt =

Z

R
|f(t)| dt = kfk1 < +1

Proposition 2.1 shows that F : L1(R) ! L1(R) is a well defined map using the definition
(1). Later on we will extend the Fourier transform to other Lp spaces for 1  p  2, with
particular interest in L2(R). For now recall from Section 2.1 that we would like to write f(t)
in terms of bf(!). This requires a Fourier inversion formula. However, the above proposition
only guarantees that bf 2 L1(R), which will not help with convergence issues. We thus
assume that bf 2 L1(R) as well.

Theorem 2.2 (Fourier inversion). If f 2 L1(R) and bf 2 L1(R) then

f(t) =
1

2⇡

Z

R
bf(!)ei!t d!, for almost every t 2 R (2)

To prove this theorem, we will need three standard results from graduate real analysis.
We state them here, without proof.

Theorem 2.3. Suppose {fn}n2N converges to f in Lp
, meaning that

lim
n!1

kfn � fkp = 0

Then there exists a subsequency {fnk
}k2N that converges to f almost everywhere,

lim
k!1

fnk
(t) = f(t) for almost every t

Theorem 2.4 (Dominated Convergence Theorem). Let {fn}n2N be a sequence of functions

such that limn!1 fn = f . If

8n 2 N, |fn(t)|  g(t) and

Z

R
g(t) dt < +1

then f 2 L1(R) and

lim
n!1

Z

R
fn(t) dt =

Z

R
f(t) dt

Theorem 2.5 (Fubini’s Theorem). Let f(u, t) be a function of two variables (u, t) 2 R2
. If

Z

R

✓Z

R
|f(u, t)| du

◆
dt < +1
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then

ZZ

R2

f(u, t) du dt =

Z

R

✓Z

R
f(u, t) du

◆
dt

=

Z

R

✓Z

R
f(u, t) dt

◆
du

Proof of Theorem 2.2. Now we turn to the proof. Plugging in the formula of bf(!) into the
right hand side of (2) yields

1

2⇡

Z

R
bf(!)ei!t = 1

2⇡

Z

R

✓Z

R
f(u)ei!(t�u) du

◆
d!

However we cannot apply Fubini directly because the function F (u,!) = f(u)ei!(t�u) is not
integrable in R2. Therefore we instead consider the following integral:

I"(t) =
1

2⇡

Z

R

✓Z

R
f(u)e�"2!2/4ei!(t�u) du

◆
d!

The Gaussian yields a new integrand F"(u,!) = f(u)e�"2!2/4ei!(t�u) which is integrable on
R2, and for which lim"!0 F" = F . We can thus apply the Fubini theorem to I"(t); we do so
in two ways. For the first, we integrate with respect to u, giving:

I"(t) =
1

2⇡

Z

R
bf(!)e�"2!2/4ei!t d!.

Since ��� bf(!)e�"2!2/4ei!t
���  | bf(!)|

and since bf 2 L1(R), we can apply the dominated convergence theorem to obtain:

lim
"!0

I"(t) =
1

2⇡

Z

R
bf(!)ei!t d! (3)

Now compute I"(t) a second way by applying the Fubini theorem and integrating with
respect to !. We get that

I"(t) =

Z

R
g"(t� u)f(u) du = f ⇤ g"(t)

where

g"(x) =
1

2⇡

Z

R
e�"2!2/4eix! d!

=
1

"
p
⇡

Z

R

"

2
p
⇡
e�"2!2/4eix! d!

=
1

"
p
⇡
e�x2/"2
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To get the last line, we used the fact that that the Fourier transform of ✓(t) = 1p
2⇡�

e�t2/2�2

is equal to b✓(⇠) = e��2⇠2/2. This is a useful identity that you should verify yourself and then
remember. Another useful identity is that

R
R ✓(t) dt = 1. From this latter formula we deduce

that Z

R
g"(x) dx = 1

Furthermore, we notice that

g"(x) = "�1g1("
�1x), g1(x) =

1p
⇡
e�x2 (4)

Thus the family {g"}">0 is an approximate identity. For general approximate identities one
can prove (see below):

lim
"!0

kf ⇤ g" � fk1 = 0

We now apply Theorem 2.3 to infer there exists a subsequence {f ⇤ g"k}k2N with "k ! 0 as
k ! 1 such that limk!1 f ⇤ g"k = f almost everywhere. On the other hand, using (3) we
have

1

2⇡

Z

R
bf(!)ei!t d! = lim

k!1
I"k(t) = lim

k!1
f ⇤ g"k(t) = f(t) for almost every t

thus completing the proof.

To complete the above proof of Theorem 2.2, we introduce the notion of an approximate

identity. A family of functions {k�}�>0 is an approximate identity if:

1. Normalized:
R
R k�(t) dt = 1 for every � > 0

2. L1-boundedness: sup�>0 kk�k1 < 1

3. L1-concentration: For every � > 0,

lim
�!0

Z

|t|��

|k�(t)| dt = 0

One can verify that the family of Gaussian functions {g"}">0 from (4) is an approximate
identity. More generally, one often constructs an approximate identity by dilating a single
function k 2 L1(R) satisfying kkk1 = 1, that is by setting k�(t) = ��1k(��1t). The following
theorem is useful on its own, and completes the proof of Theorem 2.2.

Theorem 2.6. Let {k�}�>0 be an approximate identity. Then

8 f 2 L1(R), lim
�!0

kf � f ⇤ k�k1 = 0

To prove Theorem 2.6 we will need the following standard result from real analysis.
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Theorem 2.7 (Lp continuity). Let 1  p < 1. If f 2 Lp(R), then

lim
⌧!0

kf � f⌧kp = 0

where we recall f⌧ (t) = f(t� ⌧). By the definition of limit, this means for each " > 0 there

exists a � > 0 such that

|⌧ | < � =) kf � f⌧kp < "

Proof of Theorem 2.6. Since f, k� 2 L1(R), one can show that kf ⇤ k�k1  kfk1kk�k1 < 1,
which means that f ⇤ k� 2 L1(R). Using the fact that

R
R k� = 1 for all � > 0, we have:

kf � f ⇤ k�k1 =
Z

R
|f(t)� f ⇤ k�(t)| dt

=

Z

R

����f(t)
Z

R
k�(u) du�

Z

R
f(t� u)k�(u) du

���� dt

=

ZZ

R2

|f(t)� f(t� u)||k�(u)| du dt

=

ZZ

R2

|f(t)� f(t� u)||k�(u)| dt du [Tonelli]

=

Z

R
|k�(u)|

Z

R
|f(t)� f(t� u)| dt du

=

Z

R
|k�(u)|kf � fuk1 du

Using Theorem 2.7 we know that for each " > 0 there exists a � > 0 such that

|u| < � =) kf � fuk1 < "

Also, using the properties of an approximate identity we have

K = sup
�>0

kk�k1 < 1

and there exists some �0 > 0 such that

� < �0 =)
Z

|u|��

|k�(u)| du < "
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So now assume that � < �0 and continue the calculation we started above:

kf � f ⇤ k�k1 =
Z

R
|k�(u)|kf � fuk1 du

=

Z

|u|<�

|k�(u)|kf � fuk1 du+

Z

|u|��

|k�(u)|kf � fuk1 du


Z

|u|<�

|k�(u)|" du+

Z

|u|��

|k�(u)|(kfk1 + kfuk1) du

 "

Z

R
|k�(u)| du+ 2kfk1

Z

|u|��

|k�(u)| du

 "K + 2kfk1"

Taking " ! 0 and �0 ! 0 completes the proof.

Exercise 4. Prove that the assumptions of Theorem 2.2 (Fourier inversion) imply that f
must be continuous and bounded.

Remark 2.8. Exercise 4 shows that our Fourier inversion theorem only holds for continuous
functions. However, many signals that we encounter will have discontinuities. Thus we will
need to extend the theory to discontinuous functions. This will be done by extending the
Fourier transform to L2(R) (more on this later).

Recall in Section 2.1 that for a linear shift invariant operator L with impulse response h,
we wanted to write Lf in terms of the eigenvalues bh(!) of L by also being able to compute
bf(!). The previous theorem gives us part of the solution; the other part is given by the
convolution theorem, which is stated next.

Theorem 2.9 (Convolution thoerem). Let f, g 2 L1(R). Then the function h = f ⇤ g 2
L1(R) and

bh(!) = bg(!) bf(!)

Proof. See p. 37 of A Wavelet Tour of Signal Processing.

Recall now that every bounded, linear shift invariant operator L can be written as Lf =
h ⇤ f , where h = L�. Thus using the Fourier inversion theorem and the convolution theorem
we have:

Lf(t) = h ⇤ f(t) = 1

2⇡

Z

R
[h ⇤ f(!)ei!t d! =

1

2⇡

Z

R
bh(!) bf(!)ei!t d!

Thus at last we see that the sinusoids e!(t) = ei!t diagonalize L, with eigenvalues bh(!)/2⇡.
To see this recall from before we wrote for a real valued symmetric matrix A with eigenvectors
{vk}k and eigenvalues {�k}k,

Ax =
nX

k=1

hx, vkiAvk =
nX

k=1

�khx, vkivk .
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Figure 1: Summary of basic properties of the Fourier transform. Taken from Table 2.1 of A

Wavelet Tour of Signal Processing.

The correspondence is �k $ bh(!)/2⇡, hx, vki $ bf(!), and vk $ ei!t.
The Fourier transform has several important properties that are listed in Figure 1.

Exercise 5. Verify all of the properties in Figure 1. No need to turn this one in, but it is
important to do these verifications.
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