Math 994-002: Applied and Computational Harmonic Analysis, MSU, Spring 2020

Lecture 02: The Fourier transform on L!(R)
January 14, 2019

Lecturer: Matthew Hirn

2.2 Fourier integrals

Section 2.2 of A Wavelet Tour of Signal Processing [1].

~

The Fourier transform is an operator F that maps a function f(u) to another function f(w),
which is defined as:

F()w) = flw) = / F(tye = dt 1)

We will start by trying to understand what restrictions we need to place on f in order for
this to make sense. In particular, if f is in some well defined space of functions, we will
ask, does that imply f is in some other well defined space of functions? We will start by
considering the L spaces of functions. To that end, define:

L”(R):{f:R%C:/|f(t)|pdt<+oo}, 0<p<oo
R

The space LP(R) is a Banach space with norm:

i1, =( [ \f(t)|”dt);

The space L?(R) is special, as it is in fact a Hilbert space with inner product

(r) = [ s at
R
where we use ¢g*(t) to denote the complex conjugate of ¢g(t). We also define L>(RR). Set:
[ flloc = esssup |f(?)]
teR

The value || f||o is the smallest number M, 0 < M < 400, such that |f(t)| < M for almost
every t € R; if f is continuous, it is the smallest number M such that |f(t)| < M for all
t € R. It thus measures whether f is bounded or not. The space L*(R) is the space of
bounded functions:

L*@R) ={f : [[fllec <+o0}
We then have:



Proposition 2.1. If f € L}(R), then f € L*(R).

Proof. Suppose f € L'(R). We have:

fw)l =

[ e dt\ < [ 15 1d= [ 1501t =171 < oo

]

Proposition 2.1 shows that F : L'(R) — L*®(R) is a well defined map using the definition
(1). Later on we will extend the Fourier transform to other L” spaces for 1 < p < 2, with
particular interest in L?(R). For now recall from Section 2.1 that we would like to write f(t)
in terms of f(w) This requires a Fourier inversion formula. However, the above proposition
only guarantees that J/C\ € L*(R), which will not help with convergence issues. We thus
assume that f € L(R) as well.

Theorem 2.2 (Fourier inversion). If f € L'(R) and f € L'(R) then

1 -~ .
ft) = By / f(w)e“tdw, for almost everyt € R (2)
T JRr

To prove this theorem, we will need three standard results from graduate real analysis.
We state them here, without proof.

Theorem 2.3. Suppose { f,}nen converges to f in LP, meaning that
Tim | fn = fllp =0
Then there ezists a subsequency { f,, }ren that converges to f almost everywhere,

klim fn,(t) = f(t)  for almost every t
—00

Theorem 2.4 (Dominated Convergence Theorem). Let {f,}nen be a sequence of functions
such that lim, o f, = f. If

VneN, [f(0)]<gt) and /mwﬁ<+m
R

then f € LY(R) and
lim h@ﬁ:/}@ﬁ
R R

n—o0

Theorem 2.5 (Fubini’s Theorem). Let f(u,t) be a function of two variables (u,t) € R2. If

/]R(/R|f(u,t)|du) it < oo

2



then

/RQf(u,t)dudt:/R(/Rf(u,t)du> dt
:/R(/Rf(u,t)dt> du

Proof of Theorem 2.2. Now we turn to the proof. Plugging in the formula of f(w) into the
right hand side of (2) yields

%/}Rf(w)ew = % s (/R f(u)et=w du) dw

However we cannot apply Fubini directly because the function F'(u,w) = f(u)e“*~%) is not
integrable in R%. Therefore we instead consider the following integral:

]_ 2,2 ;
I.(t) = %/R (/Rf(u)es w /i (t=u) du) dw

The Gaussian yields a new integrand F.(u,w) = f(u)e ="“*/4(=%) which is integrable on
R? and for which lim, ,o F. = F. We can thus apply the Fubini theorem to I.(t); we do so
in two ways. For the first, we integrate with respect to u, giving:

1 ~ .
I(t) = %/Rf(w)e_a%%lem dw.

Since

-~

< [f(w)]

and since fe L!(R), we can apply the dominated convergence theorem to obtain:

‘ f(w)6—52w2/46iwt

1 ~ .
g%M®=%AﬂWW%U (3)

Now compute I.(t) a second way by applying the Fubini theorem and integrating with
respect to w. We get that

L) = [ gelt = w)fu) du = F+ 9200

where

1 .
(o) = 5 [ e
1 9 2 2/4 :
— w wad
/T /R NG c ™
1

—22/e?

- (&

eV/m



To get the last line, we used the fact that that the Fourier transform of (t) = ﬁe*'g/ 202
—0%€%/2

is equal to 0(§) = e . This is a useful identity that you should verify yourself and then
remember. Another useful identity is that [, 0(t) dt = 1. From this latter formula we deduce

that
/ge(x) dx =1
R

1 2
-1 -1 —x
e x), Tr) = —=€ 4
Thus the family {g.}e>0 is an approximate identity. For general approximate identities one
can prove (see below):

~

Furthermore, we notice that

g-(z) =¢

tim [ % g — flly =0

We now apply Theorem 2.3 to infer there exists a subsequence {f * g, }ren with 5 — 0 as
k — oo such that limy_,o f * g., = f almost everywhere. On the other hand, using (3) we
have

1 ~

— / fw)e™ dw = lim I, (t) = lim fx*g. (t)= f(t) for almost every ¢
2 R k—o0 k—oo

thus completing the proof. O]

To complete the above proof of Theorem 2.2, we introduce the notion of an approzrimate
identity. A family of functions {ky},>o is an approximate identity if:

1. Normalized: [ kx(t)dt =1 for every A > 0
2. L'-boundedness: sup,., |[kxll1 < oo

3. L'-concentration: For every J > 0,

lim [ [kn(f)|dt =0

A—0 MZ&

One can verify that the family of Gaussian functions {g¢.}.~¢ from (4) is an approximate
identity. More generally, one often constructs an approximate identity by dilating a single
function k € L*(R) satisfying ||k||; = 1, that is by setting ky(t) = A"*k(A~'t). The following
theorem is useful on its own, and completes the proof of Theorem 2.2.

Theorem 2.6. Let {ky}rso be an approzimate identity. Then
VfeLYR), lmlf—fxky:i=0
A—0
To prove Theorem 2.6 we will need the following standard result from real analysis.
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Theorem 2.7 (L? continuity). Let 1 < p < oo. If f € LP(R), then
lim I = fll, = 0

where we recall f,(t) = f(t — 7). By the definition of limit, this means for each € > 0 there
exists a 6 > 0 such that

Tl <0 = |lf = folly <

Proof of Theorem 2.6. Since f, ky € L'(R), one can show that || f * kx|l1 < || f]l1]lkx]]1 < oo,
which means that f &y € L'(R). Using the fact that [ ky =1 for all X > 0, we have:

1f = f*kxﬂl—/lf f*ka(t)] dt
()/lm( du—/ft—u)lﬁ( ) du| dt

// () — £t — w)lka () du

// [f(t) — F(t — w)|lkx(w)| dtdu  [Tonelli]

/ugA |/|f F(t — )| dt-du

Z/Ik‘A(U)IIIf—fullldu
R

Using Theorem 2.7 we know that for each € > 0 there exists a 6 > 0 such that
ul <0 = |If = fulli <¢
Also, using the properties of an approximate identity we have

K =sup ||ky]|1 < o0
A>0

and there exists some Ay > 0 such that

A< A= |ka(u)] du <
Jul >3



So now assume that A\ < Ay and continue the calculation we started above:

Hf—f*kA!h:/R\kA(UHHf—quldu
:/ |7<?A(U)|||f—fu\|1du+/ ha(@)l[1f = fully du
|u|<d

lul>6

< /|u|<5|kx<u>|adu+ / @Il + 1 full) du

u|=6

<< [ Inldu+21sl [ ()l da
R lul>6
<eK +2|fllhe
Taking ¢ — 0 and Ay — 0 completes the proof. O

Exercise 4. Prove that the assumptions of Theorem 2.2 (Fourier inversion) imply that f
must be continuous and bounded.

Remark 2.8. Exercise 4 shows that our Fourier inversion theorem only holds for continuous
functions. However, many signals that we encounter will have discontinuities. Thus we will
need to extend the theory to discontinuous functions. This will be done by extending the
Fourier transform to L?(R) (more on this later).

Recall in Section 2.1 that for a linear shift invariant operator L with impulse response £,
we wanted to write Lf in terms of the eigenvalues h(w) of L by also being able to compute
f(w) The previous theorem gives us part of the solution; the other part is given by the
convolution theorem, which is stated next.

Theorem 2.9 (Convolution thoerem). Let f,g € L'(R). Then the function h = f*g €
L'(R) and

h(w) = g(w)f(w)
Proof. See p. 37 of A Wawvelet Tour of Signal Processing. m

Recall now that every bounded, linear shift invariant operator L can be written as Lf =
hx f, where h = Ld. Thus using the Fourier inversion theorem and the convolution theorem
we have:

LE(t) = h* (1) L/}Rm(w)em P

:27'(' %R

~

ﬁ(w)f(w)em dw

Thus at last we see that the sinusoids e, (t) = e™! diagonalize L, with eigenvalues ﬁ(w) /27,
To see this recall from before we wrote for a real valued symmetric matrix A with eigenvectors
{vi }r and eigenvalues {\; },

n

Az = Z(w,vk)Avk = Z Ak (T, vg) v, .

k=1 k=1



Property Function Fourier Transform

A

S J(®)

Inverse ViG) 27 f(—w)
Convolution Ji*f2(1) J1(@) f2(w)
Multiplication S1(@) f2(t) % Ji*fal@)
Translation f(t—u) e " f(w)
Modulation el f () flw—8
Scaling f(t/s) Is| f (s @)
Time derivatives S (i) f(w)
Frequency derivatives (—it)? f(t) P ()
Complex conjugate X [ (—w)
Hermitian symmetry feR f(—w)=f*()

Figure 1: Summary of basic properties of the Fourier transform. Taken from Table 2.1 of A
Wavelet Tour of Signal Processing.

The correspondence is Ay <> E(w)/?w, (x,vg) < f(w), and vy > €™t
The Fourier transform has several important properties that are listed in Figure 1.

Exercise 5. Verify all of the properties in Figure 1. No need to turn this one in, but it is
important to do these verifications.
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