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Lecture 01: Fourier, heat diffusion, and shift-invariant operators
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Lecturer: Matthew Hirn

1 Sparse Representations

Chapter 1 of A Wavelet Tour of Signal Processing [1].

Exercise 1. Read Chapter 1 (Sparse Representations) of A Wavelet Tour of Signal Process-
ing. It gives a nice overview of the book and will give you a good perspective on computa-
tional harmonic analysis heading into the course.

Exercise 2. Read the appendices in A Wawvelet Tour of Signal Processing, as we will not
cover these in class. We will immediately need some of the material contained in them.

Remark 1.1. The integral we use in this course will be the Lebesgue integral, which is
usually taught in a first year graduate course in real analysis. However, if these are unfamiliar
to you, you may replace most if not all of the results with Riemann integrals from Calculus
and assume that the generic functions f, g, h, etc. are Schwartz class functions. For more
details on the Schwartz class and Fourier integrals, see [2].

2 The Fourier Kingdom

Chapter 2 of A Wavelet Tour of Signal Processing [1].

2.1 Linear time-invariant filtering
Section 2.1 of A Wavelet Tour of Signal Processing [1].

Fourier analysis originates with the work of Joseph Fourier, who was studying the heat
equation:

O,F = AF
F(u,0) = f(u)

Where F': R? x [0,00) — R and f : R? — R. This is a linear partial differential equation. In
order to solve it, it helps to think about linear algebra. Suppose A is an n x n real valued,
symmetric matrix, which maps vectors x € R™ to other vectors Axz € R". Then from the



spectral theorem, we know that A has a complete set of orthonormal eigenvectors, v, ..., v,,
such that
A.’Uk = )\kvk

for some A, € R. Since {vj}r<, forms an ONB, it allows us to write, for any x € R",

n

x = Z(x,vk)vk,

k=1
which in turn makes evaluating Ax very easy:

n

Az = Z(w,vk)Avk = Z Ak (T, vg) v, .

k=1 k=1

Let us now try to apply the same ideas to the Laplacian, A. We may ask, what are the
eigenfunctions of the Laplacian? If we consider complex valued functions, one can verify
that

Aeiwu — _|w|2€iw~u

for any w € RY. Thus the function e,(u) = e is an eigenfunction of A for any w. Let us
formally define

o~

flw)={(f.e,) = » flu)e ™" du.

This will be what we call the Fourier transform, but right now we see it as an analogue of
basis coefficients in an ONB. Following the analogy, we may then be tempted to write:

f(u) = /Rd<f, Cw)ew(u) dw = g Flw)e™ ™ dw.

We this in hand, we then propose

F(u, t) = /Rd e*\w\QtJ/c\(w)eiw.u dw,

as the solution to the heat equation. One can verify that, formally, F' indeed is the so-
lution. Fourier analysis was then born by trying to understanding when all of this makes
mathematical sense.

The reason Fourier analysis is used so often in signal processing, is that it turns out this
analysis is not useful for just the Laplacian operator. In fact the Laplacian is just an example
of a more general class operators, called shift invariant operators. Let us now work over R
instead of R%; we will use ¢ to denote a value in R, since it is often useful to think of it as
time. Let f,(t) = f(t — 7) be the translation of f by 7; if ¢ is time, then this is a time delay
by 7. An operator L is shift invariant if it commutes with the time delay of any function,

(Lf2)(t) = (Lf)(t =)
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As we shall see all linear, continuous shift invariant operators L are diagonalized by the
complex exponentials e, (t) = e™!. To see this, recall the convolution of two functions f, g:

0 /f g(t — u)d

Now let 6(¢) be a Dirac (centered at zero), and §,(t) = 6(t — u) be a Dirac centered at u.
By definition this means f * d(t) = f(t). We have:

ft) = f=*4(t) /f t—udu—/f

Since L is continuous and linear,
= / f(u)Loy(t) du
R

Let h be the impulse response of L, defined as
h(t) = Lé(t)
Since L is shift invariant, we have
L6, (t) = h(t — u)

and therefore
/f h(t —u)du= f*h(t) =h=* f(t)

Thus every continuous, linear shift invariant operator is equivalent to a convolution with an
impulse response h.

We can now use this fact to show our original goal, which was that the complex expo-
nential functions e, (t) = ™! diagonalize L. This will in turn motivate the study of Fourier
integrals. We have:

~

Le,(t) = /Rh(u)ew(t_“) du = ™ / h(u)e™™ " du = h(w)e,(t).

JR

-~

h(w)

Thus e, (t) is an eigenfunction of L with eigenvalue /ﬁ(w), if ﬁ(w) exists. The value ﬁ(w)
is the Fourier transform of h at the frequency w. Since the functions e, (t) = ™' are the
eigenfunctions of shift invariant operators, we would like to decompose any function f as
a sum or integral of these functions. This will then allow us to write Lf directly in terms
of the eigenvalues of L (as you do in linear algebra when you are able to diagonalize a
matrix/operator on a finite dimensional vector space). We'll try to undestand when this is
possible.

Exercise 3. Read Section 2.1 of A Wavelet Tour of Signal Processing.
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