Math 994-002
Applied and Computational Harmonic Analysis

Tuesday and Thursday, 1:00pm - 2:20pm
Wells Hall C117
Matthew Hirn



Compressed Syllabus

- Office hours: MTWR, 4:00 - 5:00pm

- Book: A Wavelet Tour of Signal Processing, 3rd edition, by Stephane
Mallat

-+ Grading: Homework (80%), attendance (20%), no final
- Tentative course outline: Fourier analysis (ch 2); discrete signal
processing (ch 3); time frequency analysis (ch 4); wavelet zoom (ch

©); frames (ch 5); wavelet bases (ch 7); approximation in bases (ch 9)

- Webpage: https://matthewhirn.com/teaching/spring-2020-
mth-994-002/



What is Harmonic Analysis®?

Harmonic analysis traces its roots back to Fourier analysis. . .

Fourier analysis goes back to the 1820's and Joseph Fourier, and his work Théorie
analytique de la chaleur
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Fourier Analysis

Fourier analysis is the study of how to decompose functions or signals like this

i I

In terms of functions like this
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Heat and Wave Equations

This is useful for studying heat diffusion (Fourier's original motivation)...
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...as well as waves (such as in music)
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But harmonic analysis is useful for a lot more as well!

O7u = Au



Fourier Transform

The Fourier transform for functions is:
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The Fourier inversion formula is: T )
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The Fourier transform is like computing basis coefficients of f(x) in the “ONB" B =
{e**@} ,cr, and the Fourier inversion formula is analogous to an ONB reconstruction
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Signal Processing: Analog to Digital

On a computer, we only store samples of a signal. How many do we need?




Signal Processing: Analog to Digital
On a computer, we only store samples of a signal. How many do we need?
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Nyquist/Shannon /Whittaker: If f = 0 for all w ¢ |[—7/s,m/s], then we need
only need {f(ns)}ncz. More preC|ser

= Z f(ns)ps(x — ns)
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Compressive Sensing
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If the samples {f(ns)},cz are sparse, and if we only care about being able to
reconstruct f(x) 99.99% of the time, we can get away with even less samples, far
fewer in fact!



Fast Calculations

That's great, but how fast can we compute things like the Fourier transform after

we sample the signal?
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Answer: Fast, via the "Fast Fourier Transform!” Much faster than one might
initially think in fact.




lmage Processing
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If we have a lot of images, we may want to compress them. This requires a sparse
representation

Fourier analysis alone will not work, because images often have sharp transitions
and other fine scale structures, in addition to macroscopic patterns

We need something multiscale



lmage Processing

A wavelet 9 is a localized
waveform with zero average

In 2D, we dilate and rotate v,

Yj0(u) = 277927 Ry u)

and test the image x(u) against
0 by computing the wavelet transform: @ ®)

Wz ={x*v;0(w)};o.u

Linear and nonlinear image compression




lmage Processing

A wavelet v is a localized CAE S T
waveform with zero average S e g
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In 2D, we dilate and rotate v,
—2j 19— p—1 L
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and test the image z(u) against s ‘
;.0 by computing the wavelet transform: @ (b)

Wz ={x*v;0(w)};o.u

Linear and nonlinear image denoising




Signal Characterization

To understand the previous results, we must understand how wavelets characterize
certain classes of functions
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—xtracting Information from Complex Signals

Sometimes we want to separate out the constituent components of complex signals.
Time-frequency transforms can help with this
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Dictionary Learning
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Rather than constructing wavelets, can we learn a dictionary of waveforms that
gives a sparse representation of natural images?

l Machine learned waveforms that give

a sparse representation of natural images
Mnggl=ﬁ“l"|v= (they look very similar to wavelets!)
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Deep Learning

Of course we may not want to compress an image. We may want classify it or
even generate new synthetic images. Deep learning, and in particular convolutional
neural networks, are very good at these tasks and getting better every month
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Deep Learning and Harmonic Analysis
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Machine learned
filters at each

layer (again similar
to wavelets!)

We can use tools from harmonic analysis
to understand why deep learning works,
and even better, to inform us how to push
beyond the current state of the art

Gabor wavelets v, g Curvelet 9



Harmonic Analysis on Graphs and Manifolds

In unsupervised learning tasks, we often want to organize high dimensional data in
some fashion, e.g., cluster it, or find a low dimensional representation of the data

It turns out we can do this by understanding how to do harmonic analysis on graphs
and manifolds, like these:
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Harmonic Analysis on Graphs and Manifolds

What are the harmonics on manifolds?
Note that Ae™®® = —|w|?e®¥
Thus e'*'“ is eigenfunction of A with eigenvalue —|w|?

Let M be a compact Riemannian manifold. It turns out we can define A for
functions f : M — C. The eigenfunctions of A define the harmonics of M

Similarly let G = (V, E, W) be a weighted graph. In this case we define an analog
of A, which is the graph Laplacian L. Its eigenvectors are the harmonics of G




Manifold Learning

We can turn any dataset into a weighted graph
If we can measure some notion of similarity
between data points

Once we have a graph, we can construct the
graph Laplacian

These eigenvectors can be used to cluster
the data and/or give low dimensional embeddings

of the data




