Minimal interpolants in $C^{1,1}(\mathbb{R}^n)$

Matthew J. Hirn

Department of Mathematics Yale University

École normale supérieur de Cachan Groupe de travail "application des mathématiques"

December 7, 2011

Overview

- Introduction
- A minimal interpolant
 - An interpolant (Wells)
 - The minimal norm (Le Gruyer)
 - Le Gruyer + Wells
- Wells' construction
 - Dual cell complexes
 - Defining the interpolant
- Implementation on a computer
 - The model of computation
 - Efficient computation for $C^{1,1}(\mathbb{R}^2)$

Our setting

• Define the Lipschitz semi-norm of the gradient of a function $F: \mathbb{R}^n \to \mathbb{R}$ as:

$$\operatorname{Lip}(\nabla F) \triangleq \sup_{\substack{x,y \in \mathbb{R}^n \\ x \neq y}} \frac{\|\nabla F(x) - \nabla F(y)\|}{\|x - y\|}$$

• We will work in $C^{1,1}(\mathbb{R}^n)$, which is defined as:

$$C^{1,1}(\mathbb{R}^n) \triangleq \{ F \in C^1(\mathbb{R}^n) \mid \mathrm{Lip}(\nabla F) < \infty \}$$

Input data

We are given the following data:

 The set of points that we wish to interpolate through. Denote this set as

$$E = \{p_1, \ldots, p_N\} \subset \mathbb{R}^n$$

• The function values at each point of E:

$$f: E \to \mathbb{R}$$
$$p \mapsto f(p)$$

• The gradients at each point of *E*:

$$f_{\nabla}: E \to \mathbb{R}^n$$

 $p \mapsto f_{\nabla}(p)$

Minimal interpolant

Given (E,f,f_{∇}) , we want to compute a minimal interpolant $F \in C^{1,1}(\mathbb{R}^n)$ such that:

• Interpolate:

$$F(p) = f(p), \quad \text{for all } p \in E$$
 $\nabla F(p) = f_{\nabla}(p), \quad \text{for all } p \in E$

• Minimum norm: If $\widetilde{F} \in C^{1,1}(\mathbb{R}^n)$ is another interpolant for the data (E,f,f_{∇}) , then

$$\operatorname{Lip}(\nabla F) \leq \operatorname{Lip}(\nabla \widetilde{F})$$

Overview

- Introduction
- A minimal interpolant
 - An interpolant (Wells)
 - The minimal norm (Le Gruyer)
 - Le Gruyer + Wells
- Wells' construction
 - Dual cell complexes
 - Defining the interpolant
- 4 Implementation on a computer
 - The model of computation
 - Efficient computation for $C^{1,1}(\mathbb{R}^2)$

Wells' theorem

• Let M>0, and suppose for now that we just want an interpolant F for the data (E,f,f_{∇}) such that $\mathrm{Lip}(\nabla F)=M.$ When is this possible?

Theorem (Wells, 1973)

Let M>0 and suppose you are given data $(E,f,f_{\nabla}).$ If for each pair $(p,p')\in E\times E,$

$$f(p') \leq f(p) + \frac{1}{2} \langle f_{\nabla}(p) + f_{\nabla}(p'), p' - p \rangle + \frac{M}{4} \|p' - p\|^2 - \frac{1}{4M} \|f_{\nabla}(p') - f_{\nabla}(p)\|^2,$$

then there exists an interpolant $F \in C^{1,1}(\mathbb{R}^n)$ for the data (E,f,f_{∇}) such that $\operatorname{Lip}(\nabla F) = M$. Furthermore you can explicitly construct such an F.

Overview

- Introduction
- A minimal interpolant
 - An interpolant (Wells)
 - The minimal norm (Le Gruyer)
 - Le Gruyer + Wells
- Wells' construction
 - Dual cell complexes
 - Defining the interpolant
- 4 Implementation on a computer
 - The model of computation
 - Efficient computation for $C^{1,1}(\mathbb{R}^2)$

Le Gruyer's Γ^1 constant

• Define $\operatorname{Lip}(E,f,f_{\nabla})$ as:

 $\operatorname{Lip}(E, f, f_{\nabla}) \triangleq \inf \{ \operatorname{Lip}(\nabla F) \mid F \text{ interpolates the data } (E, f, f_{\nabla}) \}$

Definition (Le Gruyer, 2009)

Also define $\Gamma^1(E,f,f_{\nabla})$ as

$$\Gamma^{1}(E,f,f_{\nabla}) \triangleq 2 \max_{\substack{p,p' \in E \\ p \neq p'}} \sup_{x \in \mathbb{R}^{n}} \frac{T_{p}(x) - T_{p'}(x)}{\|p - x\|^{2} + \|p' - x\|^{2}},$$

where $T_p(x) \triangleq f(p) + \langle f_{\nabla}(p), x - p \rangle$.

Theorem (Le Gruyer, 2009)

For any data (E, f, f_{∇}) ,

$$\Gamma^1(E, f, f_{\nabla}) = \text{Lip}(E, f, f_{\nabla})$$

Overview

- Introduction
- 2 A minimal interpolant
 - An interpolant (Wells)
 - The minimal norm (Le Gruyer)
 - Le Gruyer + Wells
- Wells' construction
 - Dual cell complexes
 - Defining the interpolant
- Implementation on a computer
 - The model of computation
 - Efficient computation for $C^{1,1}(\mathbb{R}^2)$

Combining the results of Le Gruyer and Wells

Mini-lemma

Given data (E, f, f_{∇}) , Le Gruyer's constant $\Gamma^1 = \Gamma^1(E, f, f_{\nabla})$ satisfies the condition of Wells, i.e., for each pair $(p, p') \in E \times E$,

$$f(p') \le f(p) + \frac{1}{2} \langle f_{\nabla}(p) + f_{\nabla}(p'), p' - p \rangle + \frac{\Gamma^1}{4} \|p' - p\|^2 - \frac{1}{4\Gamma^1} \|f_{\nabla}(p') - f_{\nabla}(p)\|^2$$

Theorem (Le Gruyer & Wells)

Given data (E,f,f_{∇}) , one can construct a minimal interpolant $F \in C^{1,1}(\mathbb{R}^n)$ for (E,f,f_{∇}) .

Overview

- Introduction
- A minimal interpolant
 - An interpolant (Wells)
 - The minimal norm (Le Gruyer)
 - Le Gruyer + Wells
- Wells' construction
 - Dual cell complexes
 - Defining the interpolant
- Implementation on a computer
 - The model of computation
 - Efficient computation for $C^{1,1}(\mathbb{R}^2)$

Cell complex

Definition

A <u>cell complex</u> in \mathbb{R}^n is a set \mathcal{K} of convex polyhedra (called cells) in \mathbb{R}^n satisfying two conditions:

- lacktriangle Every face of a cell is also a cell in $\mathcal K$
- ② If $\sigma_1, \sigma_2 \in \mathcal{K}$ and $\sigma_1 \cap \sigma_2 \neq \emptyset$, then $\sigma_1 \cap \sigma_2$ is a face of both σ_1 and σ_2

Shift the points in E

• For each $p \in E$, define $\tilde{p} \in \mathbb{R}^n$ as

$$\tilde{p} \triangleq p - \frac{f_{\nabla}(p)}{\Gamma^1}$$

• Furthermore, for each $S \subseteq E$, set

$$\widetilde{S} \triangleq \{ \widetilde{p} \mid p \in S \}$$

Some useful functions

• For each $p \in E$, define $d_p : \mathbb{R}^n \to \mathbb{R}$ as

$$d_p(x) \triangleq f(p) - \frac{1}{2\Gamma^1} ||f_{\nabla}(p)||^2 + \frac{\Gamma^1}{4} ||x - \tilde{p}||^2$$

• Furthermore, for each $S \subseteq E$, define $d_S : \mathbb{R}^n \to \mathbb{R}$ as

$$d_S(x) \triangleq \min_{p \in S} d_p(x)$$

Special subsets of E

• For each $S \subseteq E$, define

$$S_e \triangleq \{x \in \mathbb{R}^n \mid d_p(x) = d_{p'}(x), \ \forall p, p' \in S\}$$

• Also for each $S \subseteq E$, define

$$S_* \triangleq \{x \in \mathbb{R}^n \mid d_p(x) = d_{p'}(x) \le d_{p''}(x), \ \forall p, p' \in S, \ \forall p'' \in E\}$$

Definition

$$K \triangleq \{S \subset E \mid \text{for some } x \in S_*, \ d_S(x) < d_{E \setminus S}(x)\}$$

The cell complex \mathcal{K}_*

Definition

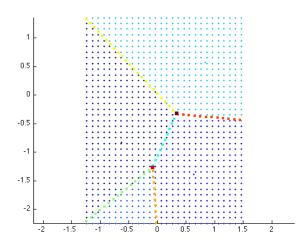
$$\mathcal{K}_* \triangleq \{S_* \mid S \in K\}$$

Lemma (Wells, 1973)

 \mathcal{K}_* is a cell complex in \mathbb{R}^n , and furthermore

$$\bigcup_{S\in K}S_*=\mathbb{R}^n$$

The cell complex \mathcal{K}_*



The cell complex $\widehat{\mathcal{K}}$

- For each $S \subseteq E$, define
 - $S_a \triangleq \mathsf{the} \; \mathsf{smallest} \; \mathsf{affine} \; \mathsf{subspace} \; \mathsf{of} \; \mathbb{R}^n \; \mathsf{containing} \; \widetilde{S}$
- Also for each $S \subseteq E$, define

$$\widehat{S} \triangleq \text{convex hull of } \widetilde{S}$$

Definition

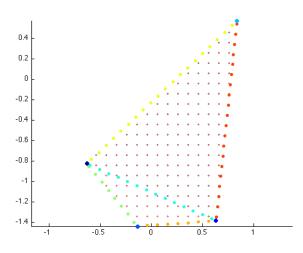
$$\widehat{\mathcal{K}} \triangleq \{\widehat{S} \mid S \in K\}$$

Lemma (Wells, 1973)

 $\widehat{\mathcal{K}}$ is a cell complex in \mathbb{R}^n , and furthermore

$$\bigcup_{S \in K} \widehat{S} = \text{convex hull of } \widetilde{E}$$

The cell complex $\widehat{\mathcal{K}}$



Duality between $\widehat{\mathcal{K}}$ and \mathcal{K}_*

The two cell complexes $\widehat{\mathcal{K}}$ and \mathcal{K}_* have the following duality between them:

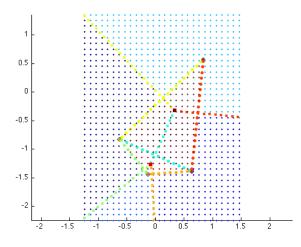
• For each $S \in K$,

$$\widehat{S} \perp S_*$$
 and $\dim(\widehat{S}) + \dim(S_*) = n$

• If $S, S' \in K$ and $S \subseteq S'$, then

$$\widehat{S} \subseteq \widehat{S'}$$
 and $S'_* \subseteq S_*$

The cell complexes $\widehat{\mathcal{K}}$ and \mathcal{K}_*



A third cell complex

Definition

For each $S \in K$, let

$$T_S \triangleq \{x \in \mathbb{R}^n \mid x = \frac{1}{2}(y+z) \text{ for some } y \in \widehat{S} \text{ and } z \in S_*\},$$

and set

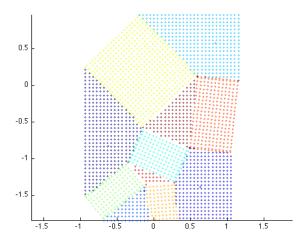
$$\mathcal{K}_T \triangleq \{T_S \mid S \in K\}$$

Lemma (Wells, 1973)

 \mathcal{K}_T is a cell complex in \mathbb{R}^n , and furthermore

$$\bigcup_{S\in K}T_S=\mathbb{R}^n$$

The cell complex \mathcal{K}_T



Overview

- Introduction
- A minimal interpolant
 - An interpolant (Wells)
 - The minimal norm (Le Gruyer)
 - Le Gruyer + Wells
- Wells' construction
 - Dual cell complexes
 - Defining the interpolant
- Implementation on a computer
 - The model of computation
 - Efficient computation for $C^{1,1}(\mathbb{R}^2)$

The minimal interpolant

• For each $S \in K$, set $S_c \triangleq S_a \cap S_e \in \mathbb{R}^n$ (note: $S_a \perp S_e$).

Definition

For each $S \in K$, define $F_S : T_S \to \mathbb{R}$ as

$$F_S(x) \triangleq d_S(S_c) + \frac{\Gamma^1}{2} (\operatorname{dist}(x, S_a)^2 - \operatorname{dist}(x, S_e)^2), \ \forall x \in T_S$$

Theorem (Wells and Le Gruyer)

A minimal interpolant $F : \mathbb{R}^n \to \mathbb{R}$ can then be defined as:

$$F(x) \triangleq F_S(x)$$
, if $x \in T_S$

Lemma (Wells, 1973)

For each $S \in K$, $F_S \in C^{\infty}(T_S)$ and furthermore,

$$\nabla F_S(x) = \frac{\Gamma^1}{2}(z - y),$$

where $x = \frac{1}{2}(y+z)$ and $y \in \widehat{S}$, $z \in S_*$.

Now one needs to check several things:

- Is F well defined? $F_S(x) = F_{S'}(x)$, for all $x \in T_S \cap T_{S'}$ Proof: use $S_a \perp S_e$, $\widehat{S} \perp S_*$, and $S_c = S_a \cap S_e$
- Is $F \in C^{1,1}(\mathbb{R}^n)$? $\nabla F_S(x) = \nabla F_{S'}(x)$, for all $x \in T_S \cap T_{S'}$ Proof: use the previous lemma
- Does $\operatorname{Lip}(\nabla F) = \Gamma^1$? $\operatorname{Lip}(\nabla F_S) = \Gamma^1$
 - Proof: use previous lemma and $S \perp S_*$

Now one needs to check several things:

- Is F well defined?
 - $F_S(x) = F_{S'}(x)$, for all $x \in T_S \cap T_{S'}$

Proof: use $S_a \perp S_e$, $\widehat{S} \perp S_*$, and $S_c = S_a \cap S_e$

- Is $F \in C^{1,1}(\mathbb{R}^n)$? $\nabla F_S(x) = \nabla F_{S'}(x)$, for all $x \in T_S \cap T_{S'}$ Proof: use the previous lemma
- Does $Lip(\nabla F) = \Gamma^1$? $Lip(\nabla F_S) = \Gamma^1$

Proof: use previous lemma and $\widehat{S} \perp S_*$

Now one needs to check several things:

- Is F well defined? $F_S(x) = F_{S'}(x)$, for all $x \in T_S \cap T_{S'}$ Proof: use $S_a \perp S_e$, $\widehat{S} \perp S_*$, and $S_c = S_a \cap S_e$
- Is $F \in C^{1,1}(\mathbb{R}^n)$? $\nabla F_S(x) = \nabla F_{S'}(x)$, for all $x \in T_S \cap T_{S'}$ Proof: use the previous lemma
- Does $\operatorname{Lip}(\nabla F) = \Gamma^1$? $\operatorname{Lip}(\nabla F_S) = \Gamma^1$ Proof: use previous lemma and $\widehat{S} \perp S_*$

Now one needs to check several things:

- Is F well defined? $F_S(x) = F_{S'}(x)$, for all $x \in T_S \cap T_{S'}$ Proof: use $S_a \perp S_e$, $\widehat{S} \perp S_*$, and $S_c = S_a \cap S_e$
- Is $F \in C^{1,1}(\mathbb{R}^n)$? $\nabla F_S(x) = \nabla F_{S'}(x)$, for all $x \in T_S \cap T_{S'}$ Proof: use the previous lemma
- Does $\operatorname{Lip}(\nabla F) = \Gamma^1$? $\operatorname{Lip}(\nabla F_S) = \Gamma^1$ Proof: use previous lemma and $\widehat{S} \perp S_*$

Now one needs to check several things:

Is F well defined?

$$F_S(x) = F_{S'}(x)$$
, for all $x \in T_S \cap T_{S'}$

Proof: use $S_a \perp S_e$, $\widehat{S} \perp S_*$, and $S_c = S_a \cap S_e$

• Is $F \in C^{1,1}(\mathbb{R}^n)$?

$$\nabla F_S(x) = \nabla F_{S'}(x)$$
, for all $x \in T_S \cap T_{S'}$

Proof: use the previous lemma

• Does $\operatorname{Lip}(\nabla F) = \Gamma^1$?

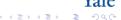
$$\text{Lip}(\nabla F_S) = \Gamma^1$$

Proof: use previous lemma and $\widehat{S} \perp S_*$

Finally, we need to check that F interpolates the data (E, f, f_{∇}) :

$$F(p) = f(p)$$
 and $\nabla F(p) = f_{\nabla}(p), \ \forall p \in E$

- Clearly, $\{p\}_a = \widehat{\{p\}} = \{\tilde{p}\} = \{p \frac{f_{\nabla}(p)}{\Gamma^1}\} \Rightarrow \{p\}_c = \tilde{p}$
- Wells' condition $\Rightarrow d_p(p + \frac{f_{\nabla}(p)}{\Gamma^1}) \le d_{p'}(p + \frac{f_{\nabla}(p)}{\Gamma^1}), \ \forall p' \in E$
- $\bullet \Rightarrow p + \frac{f_{\nabla}(p)}{\Gamma^1} \in \{p\},\$
- $\bullet \Rightarrow p = \frac{1}{2}(\tilde{p} + p + \frac{f_{\nabla}(p)}{\Gamma^1}) \in T_{\{p\}}$
- $F(p) = F_{\{p\}}(p) = d_{\{p\}}(\tilde{p}) + \frac{\Gamma'}{2}(\operatorname{dist}(p, \{p\}_a)^2 \operatorname{dist}(p, \{p\}_e)^2) = f(p)$
- $\nabla F(p) = \frac{\Gamma^1}{2} (p + \frac{f_{\nabla}(p)}{\Gamma^1} \tilde{p}) = f_{\nabla}(p)$



Finally, we need to check that F interpolates the data (E, f, f_{∇}) :

$$F(p) = f(p)$$
 and $\nabla F(p) = f_{\nabla}(p), \ \forall p \in E$

- \bullet Clearly, $\{p\}_a=\widehat{\{p\}}=\{\tilde{p}\}=\{p-\frac{f_{\nabla}(p)}{\Gamma^1}\}\Rightarrow \{p\}_c=\tilde{p}$
- Wells' condition $\Rightarrow d_p(p + \frac{f_{\nabla}(p)}{\Gamma^1}) \le d_{p'}(p + \frac{f_{\nabla}(p)}{\Gamma^1}), \ \forall p' \in E$
- $\bullet \Rightarrow p + \frac{f_{\nabla}(p)}{\Gamma^1} \in \{p\},\$
- $\bullet \Rightarrow p = \frac{1}{2}(\tilde{p} + p + \frac{f_{\nabla}(p)}{\Gamma^{1}}) \in T_{\{p\}}$
- $F(p) = F_{\{p\}}(p) = d_{\{p\}}(\tilde{p}) + \frac{\Gamma'}{2}(\operatorname{dist}(p, \{p\}_a)^2 \operatorname{dist}(p, \{p\}_e)^2) = f(p)$

Finally, we need to check that F interpolates the data (E, f, f_{∇}) :

$$F(p) = f(p)$$
 and $\nabla F(p) = f_{\nabla}(p), \ \forall p \in E$

- \bullet Clearly, $\{p\}_a=\widehat{\{p\}}=\{\tilde{p}\}=\{p-\frac{f_{\nabla}(p)}{\Gamma^1}\}\Rightarrow \{p\}_c=\tilde{p}$
- Wells' condition $\Rightarrow d_p(p + \frac{f_{\nabla}(p)}{\Gamma^1}) \le d_{p'}(p + \frac{f_{\nabla}(p)}{\Gamma^1}), \ \forall p' \in E$
- $\bullet \Rightarrow p + \frac{f_{\nabla}(p)}{\Gamma^1} \in \{p\},\$
- $\bullet \Rightarrow p = \frac{1}{2}(\tilde{p} + p + \frac{f_{\nabla}(p)}{\Gamma^1}) \in T_{\{p\}}$
- $F(p) = F_{\{p\}}(p) = d_{\{p\}}(\tilde{p}) + \frac{1}{2}(\operatorname{dist}(p, \{p\}_a)^2 \operatorname{dist}(p, \{p\}_e)^2) = f(p)$
- $\nabla F(p) = \frac{\Gamma^1}{2} \left(p + \frac{f_{\nabla}(p)}{\Gamma^1} \tilde{p} \right) = f_{\nabla}(p)$

Finally, we need to check that F interpolates the data (E, f, f_{∇}) :

$$F(p) = f(p)$$
 and $\nabla F(p) = f_{\nabla}(p), \ \forall p \in E$

- \bullet Clearly, $\{p\}_a=\widehat{\{p\}}=\{\tilde{p}\}=\{p-\frac{f_{\nabla}(p)}{\Gamma^1}\}\Rightarrow \{p\}_c=\tilde{p}$
- Wells' condition $\Rightarrow d_p(p + \frac{f_{\nabla}(p)}{\Gamma^1}) \le d_{p'}(p + \frac{f_{\nabla}(p)}{\Gamma^1}), \ \forall p' \in E$
- $\bullet \Rightarrow p + \frac{f_{\nabla}(p)}{\Gamma^{1}} \in \{p\}_{*}$
- $\bullet \Rightarrow p = \frac{1}{2}(\tilde{p} + p + \frac{f_{\nabla}(p)}{\Gamma^1}) \in T_{\{p\}}$
- $F(p) = F_{\{p\}}(p) = d_{\{p\}}(\tilde{p}) + \frac{\Gamma^1}{2}(\operatorname{dist}(p, \{p\}_a)^2 \operatorname{dist}(p, \{p\}_e)^2) = f(p)$
- $\nabla F(p) = \frac{\Gamma^1}{2} \left(p + \frac{f_{\nabla}(p)}{\Gamma^1} \tilde{p} \right) = f_{\nabla}(p)$

Proof of theorem

Finally, we need to check that F interpolates the data (E, f, f_{∇}) :

$$F(p) = f(p)$$
 and $\nabla F(p) = f_{\nabla}(p), \ \forall p \in E$

Proof (fix $p \in E$):

- \bullet Clearly, $\{p\}_a=\widehat{\{p\}}=\{\tilde{p}\}=\{p-\frac{f_{\nabla}(p)}{\Gamma^1}\}\Rightarrow \{p\}_c=\tilde{p}$
- Wells' condition $\Rightarrow d_p(p + \frac{f_{\nabla}(p)}{\Gamma^1}) \le d_{p'}(p + \frac{f_{\nabla}(p)}{\Gamma^1}), \ \forall p' \in E$
- $\bullet \Rightarrow p + \frac{f_{\nabla}(p)}{\Gamma^1} \in \{p\}_*$
- ullet $\Rightarrow p = \frac{1}{2}(\tilde{p} + p + \frac{f_{\nabla}(p)}{\Gamma^1}) \in T_{\{p\}}$
- $F(p) = F_{\{p\}}(p) = d_{\{p\}}(\tilde{p}) + \frac{\Gamma^{1}}{2}(\operatorname{dist}(p, \{p\}_{a})^{2} \operatorname{dist}(p, \{p\}_{e})^{2}) = f(p)$
- $\nabla F(p) = \frac{\Gamma^1}{2} \left(p + \frac{f_{\nabla}(p)}{\Gamma^1} \tilde{p} \right) = f_{\nabla}(p)$

Proof of theorem

Finally, we need to check that F interpolates the data (E, f, f_{∇}) :

$$F(p) = f(p)$$
 and $\nabla F(p) = f_{\nabla}(p), \ \forall p \in E$

Proof (fix $p \in E$):

- ullet Clearly, $\{p\}_a=\widehat{\{p\}}=\{ ilde{p}\}=\{p-rac{f_
 abla(p)}{\Gamma^1}\}\Rightarrow \{p\}_c= ilde{p}$
- Wells' condition $\Rightarrow d_p(p + \frac{f_{\nabla}(p)}{\Gamma^1}) \le d_{p'}(p + \frac{f_{\nabla}(p)}{\Gamma^1}), \ \forall p' \in E$
- $\bullet \Rightarrow p + \frac{f_{\nabla}(p)}{\Gamma^{1}} \in \{p\}_{*}$
- ullet $\Rightarrow p = \frac{1}{2}(\tilde{p} + p + \frac{f_{\nabla}(p)}{\Gamma^1}) \in T_{\{p\}}$
- $F(p) = F_{\{p\}}(p) = d_{\{p\}}(\tilde{p}) + \frac{\Gamma^1}{2}(\operatorname{dist}(p, \{p\}_a)^2 \operatorname{dist}(p, \{p\}_e)^2) = f(p)$
- $\nabla F(p) = \frac{\Gamma^1}{2} \left(p + \frac{f_{\nabla}(p)}{\Gamma^1} \tilde{p} \right) = f_{\nabla}(p)$

Proof of theorem

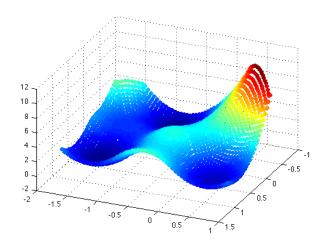
Finally, we need to check that F interpolates the data (E, f, f_{∇}) :

$$F(p) = f(p)$$
 and $\nabla F(p) = f_{\nabla}(p), \ \forall p \in E$

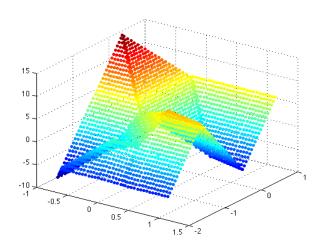
Proof (fix $p \in E$):

- ullet Clearly, $\{p\}_a=\widehat{\{p\}}=\{ ilde{p}\}=\{p-rac{f_
 abla(p)}{\Gamma^1}\}\Rightarrow \{p\}_c= ilde{p}$
- Wells' condition $\Rightarrow d_p(p + \frac{f_{\nabla}(p)}{\Gamma^1}) \le d_{p'}(p + \frac{f_{\nabla}(p)}{\Gamma^1}), \ \forall p' \in E$
- $\bullet \Rightarrow p + \frac{f_{\nabla}(p)}{\Gamma^1} \in \{p\}_*$
- ullet $\Rightarrow p = \frac{1}{2}(\tilde{p} + p + \frac{f_{\nabla}(p)}{\Gamma^1}) \in T_{\{p\}}$
- $F(p) = F_{\{p\}}(p) = d_{\{p\}}(\tilde{p}) + \frac{\Gamma^1}{2}(\operatorname{dist}(p, \{p\}_a)^2 \operatorname{dist}(p, \{p\}_e)^2) = f(p)$
- $\nabla F(p) = \frac{\Gamma^1}{2} (p + \frac{f_{\nabla}(p)}{\Gamma^1} \tilde{p}) = f_{\nabla}(p)$

The minimal interpolant F



The partial derivative $\frac{\partial F}{\partial y}$



Overview

- Introduction
- A minimal interpolant
 - An interpolant (Wells)
 - The minimal norm (Le Gruyer)
 - Le Gruyer + Wells
- Wells' construction
 - Dual cell complexes
 - Defining the interpolant
- 4 Implementation on a computer
 - The model of computation
 - Efficient computation for $C^{1,1}(\mathbb{R}^2)$

Computer model

We want to efficiently compute minimal interpolants $F \in C^{1,1}(\mathbb{R}^n)$ for the data (E,f,f_{∇}) .

Our computer model is the following:

- It can work with real numbers and an exact real number can be stored at each memory address
- It takes one machine operation to add, subtract, multiply, or divide two real numbers x and y, or to compare them (i.e., decide whether x < y, x > y, or x = y)

Compute a function *F*

To "compute a function F" means the following:

- First, we enter the data (E, f, f_{∇}) into the computer.
- The computer then works for a while, performing L₀ machine operations. This is the one-time work.
- The computer then signals that it is ready to accept further input.
- Whenever we enter a point $x \in \mathbb{R}^n$, the computer responds by producing $(F(x), \nabla F(x))$, using L_1 machine operations to the make the computation. This is the query work.
- The storage of our algorithm is the number of memory addresses required to carry out the above work.

Efficiency goals

Recall, |E| = N.

Ideally, our algorithm will only require the following:

• One-time work: C(n)NlogN

• Query work: C(n)logN

• Storage: C(n)N

Here, C(n) is a constant depending only on n.

Overview

- Introduction
- A minimal interpolant
 - An interpolant (Wells)
 - The minimal norm (Le Gruyer)
 - Le Gruyer + Wells
- Wells' construction
 - Dual cell complexes
 - Defining the interpolant
- Implementation on a computer
 - The model of computation
 - Efficient computation for $C^{1,1}(\mathbb{R}^2)$

Computation of Γ^1

- To compute a minimal interpolant F exactly, using only C(n)NlogN one-time work, is most likely impossible.
- Indeed, recall the constant Γ^1 , defined as:

$$\Gamma^{1} \triangleq 2 \max_{\substack{p,p' \in E \\ p \neq p'}} \sup_{x \in \mathbb{R}^{n}} \frac{T_{p}(x) - T_{p'}(x)}{\|p - x\|^{2} + \|p' - x\|^{2}}$$

• In fact, by a result of Le Gruyer (2009), one can write Γ^1 as:

$$\Gamma^{1} = \max_{\substack{p,p' \in E \\ p \neq p'}} \sqrt{A_{p,p'}^{2} + B_{p,p'}^{2}} + |A_{p,p'}|$$

• Still though, to compute Γ^1 , we must use $C(n)N^2$ operations.

Approximation of Γ^1

• We propose computing an approximation $\widetilde{\Gamma}^1$ that is within $\varepsilon>0$ of Γ^1 , i.e.,

$$\widetilde{\Gamma}^1 \leq (1+\varepsilon)\Gamma^1$$

Conjecture/Lemma (H. and Narayanan, 2011)

Let $\varepsilon>0$ and suppose you are given data (E,f,f_{∇}) , where |E|=N. Then there exists an algorithm, using no more than $C(n,\varepsilon)N$ storage and $C(n,\varepsilon)NlogN$ work, that computes a constant $\widetilde{\Gamma}^1(E,f,f_{\nabla})$ such that

$$\widetilde{\Gamma}^1 \le (1+\varepsilon)\Gamma^1$$

• Main idea: use a well separated pairs decomposition (WSPD) for E in the same spirit as how one approximates $\operatorname{Lip}(f)$. By Callahan and Kosaraju (1995), the WSPD can be computed using only $C(n,\varepsilon)N$ storage and $C(n,\varepsilon)NlogN$ work.

Computation of F

Conjecture/Theorem (H. and Narayanan, 2011)

Let $\varepsilon>0$ and suppose you are given data (E,f,f_{∇}) , where $E\subset\mathbb{R}^2$ and |E|=N. Then there exists an algorithm, using no more than $C(\varepsilon)N$ storage, $C(\varepsilon)NlogN$ one-time work, and $C(\varepsilon)logN$ query work, that computes an interpolant F for the data (E,f,f_{∇}) such that $\operatorname{Lip}(\nabla F)\leq (1+\varepsilon)\Gamma^1$.

The main ideas are the following:

- Use the previous lemma to compute $\widetilde{\Gamma}^1$ (one-time work).
- The cell complex \mathcal{K}_* is a generalization of a Voronoi diagram, which in \mathbb{R}^2 can be computed using CN storage and CNlogN operations (one-time work).
- Given $x \in \mathbb{R}^2$, determining which T_S cell contains x is a point location problem. In \mathbb{R}^2 , this can be done using CN storage and logN operations (query work).

Future directions

Some possible future directions are:

- Computation of interpolants in higher dimensions.
- Consider the same space $C^{1,1}(\mathbb{R}^n)$, but suppose you are only given data (E, f) (i.e. no information on the gradients).
- Consider higher order derivatives, i.e., $C^{m,1}(\mathbb{R}^n)$.

Matthew J. Hirn

Merci!

Merci!

