Deep Wavelet Scattering for Quantum Energy Regression

2016 March APS Meeting
Predicting and Classifying Materials via
High-Throughput Databases and Machine Learning I

Matthew Hirn

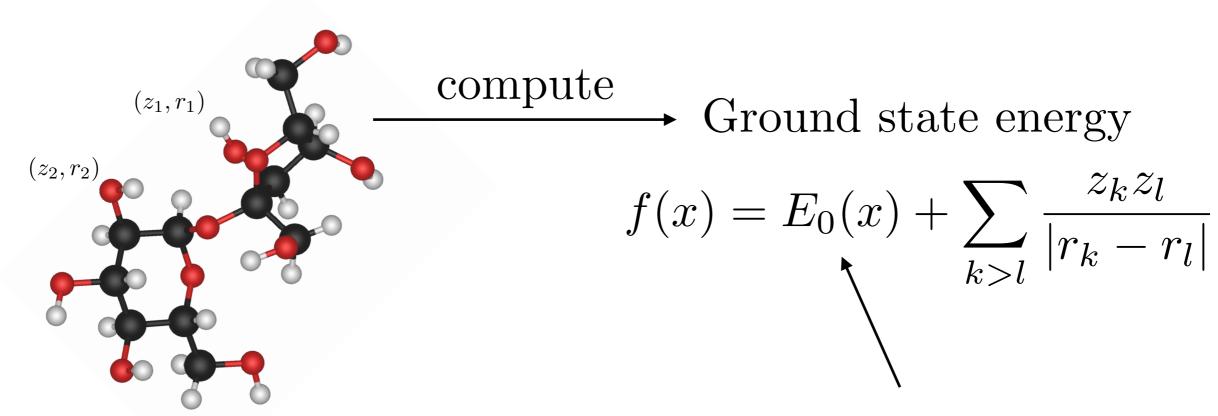
Michigan State University
Department of Computational Mathematics, Science & Engineering
Department of Mathematics

Collaborators

Stéphane Mallat

Nicolas Poilvert

What do we want do?

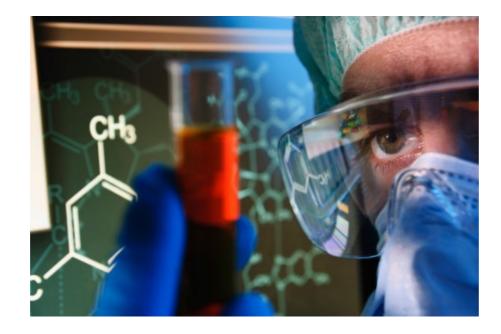


Molecule $x = \{\text{charges, positions}\}$ $= \{(z_k, r_k)\}_k$

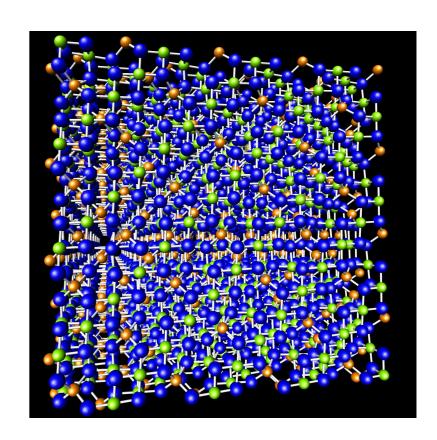
Energy from quantum electron interactions

Why do we want to do it?

Google of molecules



Drug discovery



Materials design

So what's the problem?

$$f(x) = E_0(x) + \sum_{k>l} \frac{z_k z_l}{|r_k - r_l|}$$

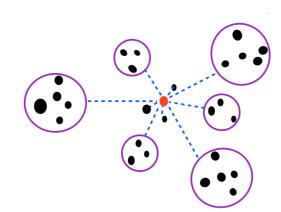
Schrödinger equation

$$H[x]\Psi_0[x] = E_0(x)\Psi_0[x]$$

Not this
Fast multipole methods
(Greengard, Rokhlin)

Quantum mechanical (QM) approaches:

- Direct attacks (very small systems)
- Wave-function methods (small systems)
- Density functional theory (larger systems)



 $O(N^{\beta}), \ \beta \geq 3$ computational cost

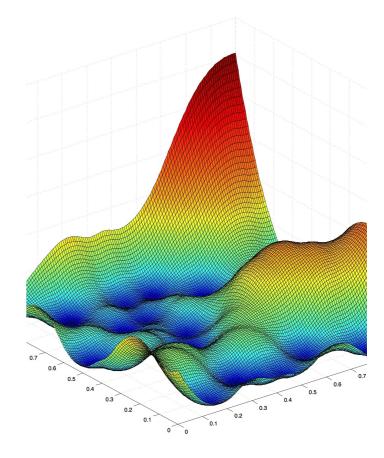
N = # electrons

Recent idea: Interpolation from known samples

- Use QM to compute training samples $\{(x_i, f(x_i))\}_{i \leq n}$
- Interpolate f(x) from the training samples

<u>Issue:</u> Curse of dimensionality

- ϵ accuracy requires $O(\epsilon^{-d})$ samples
- d = dimension = O(# atoms)



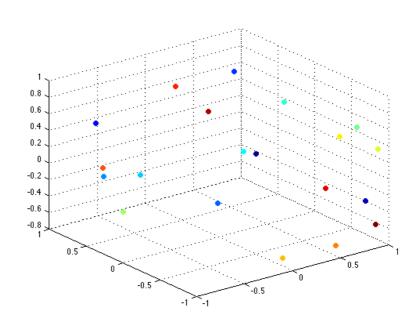
Recent idea: Interpolation from known samples

- Use QM to compute training samples $\{(x_i, f(x_i))\}_{i \leq n}$
- Interpolate f(x) from the training samples

<u>Issue:</u> Curse of dimensionality

- ϵ accuracy requires $O(\epsilon^{-d})$ samples
- d = dimension = O(# atoms)

Need to take advantage of invariants and regularity of f



Energy invariants and regularity

• Permutation invariance

Invariant to permutations of the atom index k

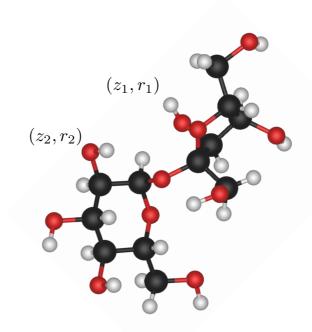
$$f(x) = E_0(x) + \sum_{k>l} \frac{z_k z_l}{|r_k - r_l|}$$

• Isometry invariance Invariant to translations, rotations and reflections

• Deformation stability

Lipschitz stable to diffeomorphisms of the molecule

(Bartók, Kondor, Csányi)



Molecule

$$x = \{\text{charges, positions}\}\$$

= $\{(z_k, r_k)\}_k$

Regression over a dictionary

• New representation of the molecule x:

$$\Phi(x) = (\phi_k(x))_k$$

• Linear regression (interpolation) of f using Φ :

$$\widetilde{f}(x) = \langle w, \Phi(x) \rangle = \sum_{k} w_k \phi_k(x)$$

• Weights $(w_k)_k$ learned from the training data

```
(Bartók, Kondor, Csányi: SOAP kernels)
(Rupp, Tkatchenko, Müller, von Lilienfeld: Coulomb matrices)
(And many others...)
```

Dictionary properties

$$\widetilde{f}(x) = \langle w, \Phi(x) \rangle = \sum_{k} w_k \phi_k(x)$$

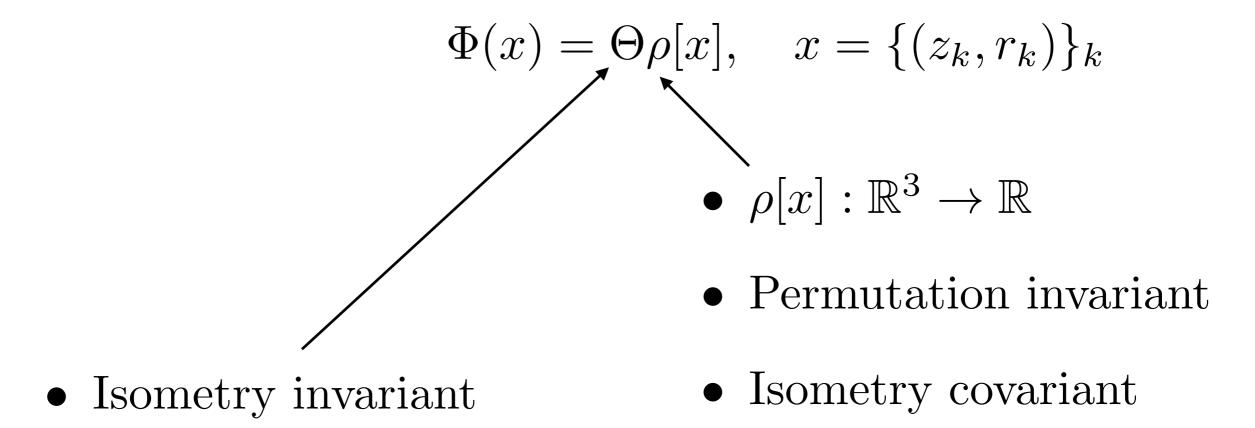
The dictionary Φ should:

- \bullet Have the same invariants and regularity as f
 - permutation invariance
 - isometry invariance
 - deformation stability
- Span a large enough space to approximate f to high accuracy, with as few terms as possible

$$||w||_0 \leq M$$

Dictionary structure

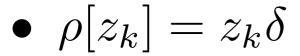
Decompose Φ as:



- Lipschitz stable to diffeomorphisms
- This part is the main difficulty

Non-interacting density

$$\rho[x](u) = \sum_{k} \rho[z_k](u - r_k), \quad x = \{(z_k, r_k)\}_k$$



$$= \rho_{\rm cor}[z_k] + \rho_{\rm val}[z_k]$$

•
$$\rho[z_k] = (\rho_{\text{cor}}[z_k], \rho_{\text{val}}[z_k])$$

Fourier and autocorrelation

Dictionary $\Phi = \Theta \rho$

Now we focus on Θ ; recall goals:

- Isometry invariant (translations, rotations, reflections)
- Stable to deformations

"Classic" translation invariant representations:

- Autocorrelation: $\Theta \rho(\tau) = \int \rho(u) \rho(u-\tau) du$
- Fourier modulus: $\widehat{\Theta}\rho(\omega) = |\widehat{\rho}(\omega)|^2$

Integrate over rotations to obtain isometry invariance

Fourier and autocorrelation

Invariant Fourier operator:

$$\widehat{\Theta}\rho(\alpha) = \|\widehat{\rho}_{\alpha}\|_{2}^{2} = \int_{S^{2}} |\widehat{\rho}(\alpha\eta)|^{2} d\eta$$

$$\omega = \alpha\eta, \ (\alpha, \eta) \in \mathbb{R}^{+} \times S^{2}$$

$$|\omega| = \alpha$$

Pros:

- Isometry invariant
- Diagonalizes Coulomb:

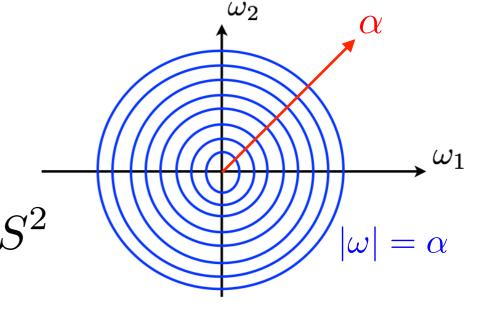
$$U(\rho) = \iint \frac{\rho(u)\rho(v)}{|u - v|} du dv = \frac{1}{2\pi^2} \int_0^\infty \alpha^{-2} \|\widehat{\rho}_{\alpha}\|_2^2 d\alpha$$

Fourier and autocorrelation

Invariant Fourier operator:

$$\widehat{\Theta}\rho(\alpha) = \|\widehat{\rho}_{\alpha}\|_{2}^{2} = \int_{S^{2}} |\widehat{\rho}(\alpha\eta)|^{2} d\eta$$

$$\omega = \alpha\eta, \ (\alpha, \eta) \in \mathbb{R}^{+} \times S^{2}$$

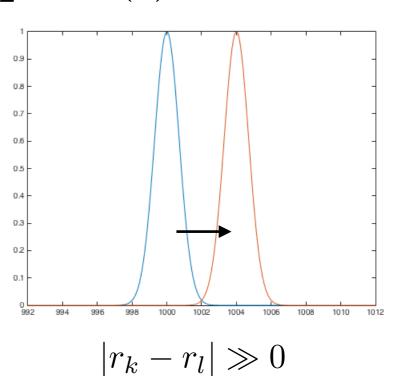


Cons:

- Not sparse: $U(\rho) = \sum_{k=1}^{\epsilon^{-2}} w_k \|\widehat{\rho}_{k\epsilon}\|_2^2 + O(\epsilon)$
- Not stable to deformations:

Invariant autocorrelation:

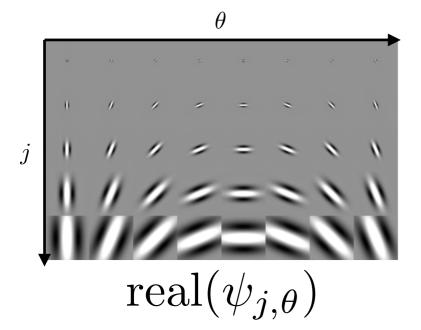
- Bumps located at $\{|r_k r_l|\}_{k,l}$
- $-\Delta$ sized diffeomorphism moves them $\Delta |r_k - r_l|$ distance

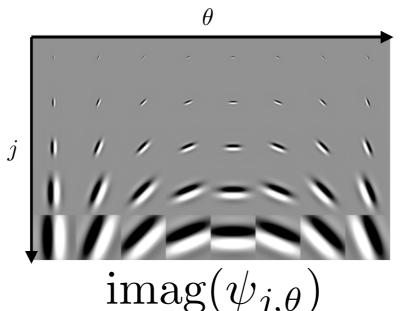


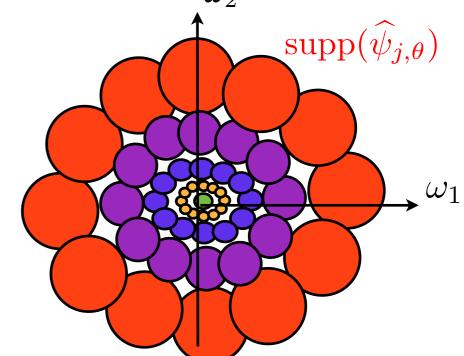
Wavelets

- Wavelet $\psi(u) = e^{-|u|^2} (e^{i\eta_0 \cdot u} C),$ $\int \psi = 0$
- Dilated and rotated:

$$\psi_{j,\theta} = 2^{-3j} \psi(2^{-j} R_{\theta}^{-1} u), \quad j \in \mathbb{Z}, \ R_{\theta} \in \mathcal{O}(3)$$

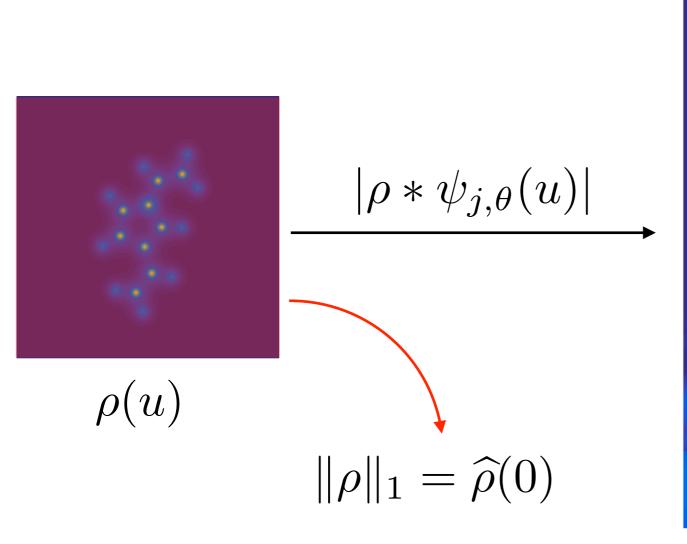


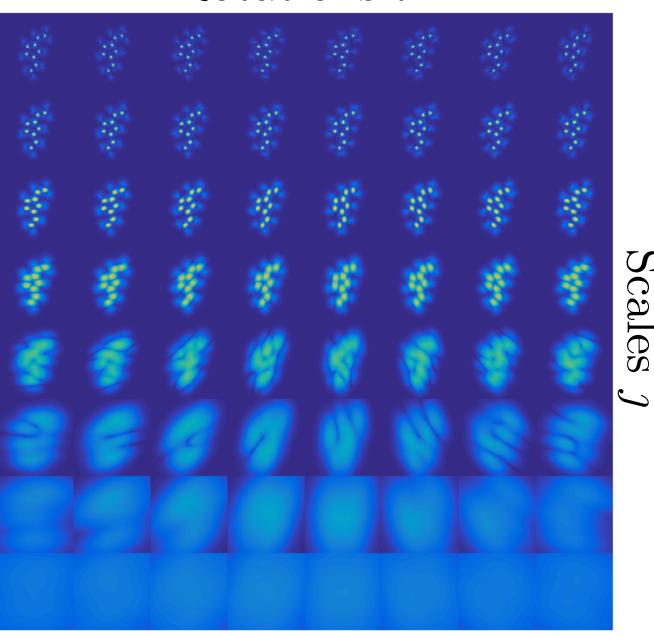




Wavelet Transform: $\rho \mapsto \{ \int \rho, \ \rho * \psi_{j,\theta}(u) \}$ Interactions at scale 2^{j} in direction θ

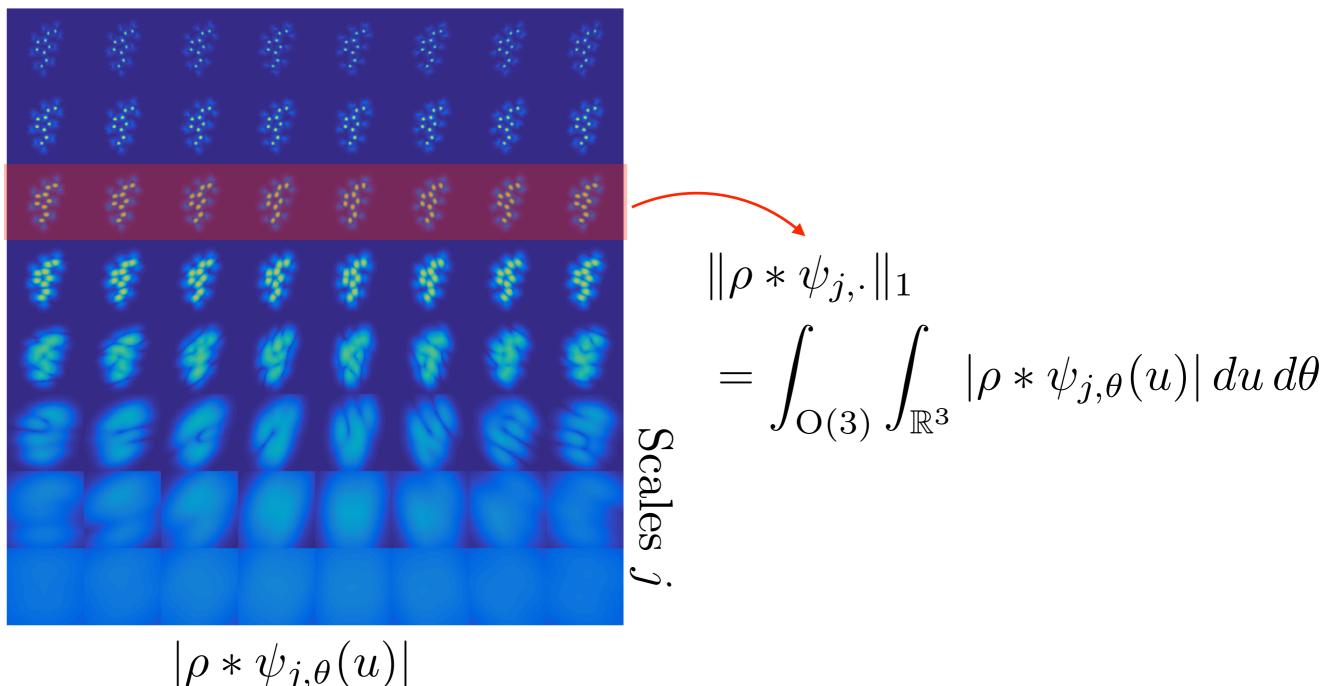
Wavelet modulus





Wavelet invariants

Rotations θ



Invariant wavelet operator

Invariant wavelet operator:

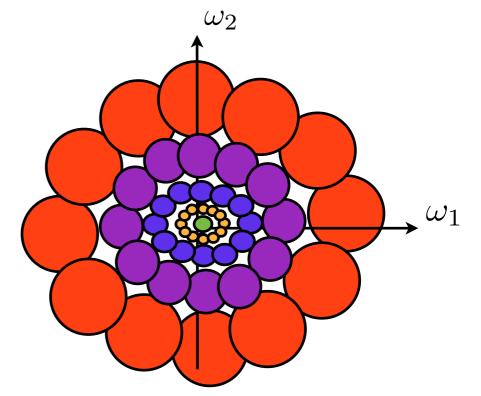
$$\Theta \rho(j) = \|\rho * \psi_{j,\cdot}\|_1$$

Pros:

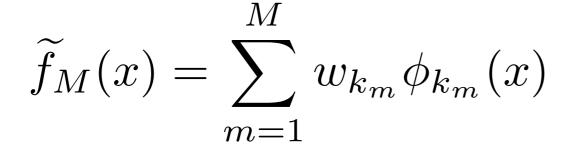
- Isometry invariant
- Stable to deformations (Mallat)
- Diagonalizes Coulomb and is sparse:

$$U(\rho) = \sum_{j=\log \epsilon}^{-\log \epsilon} w_j \|\rho * \psi_{j,\cdot}\|_2^2 + O(\epsilon)$$

Cons: Encoding the invariants removes a lot of information



M-term regression error

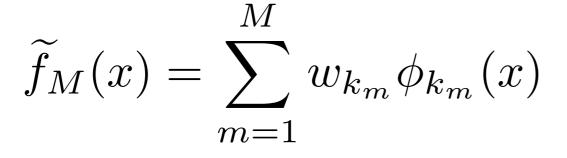


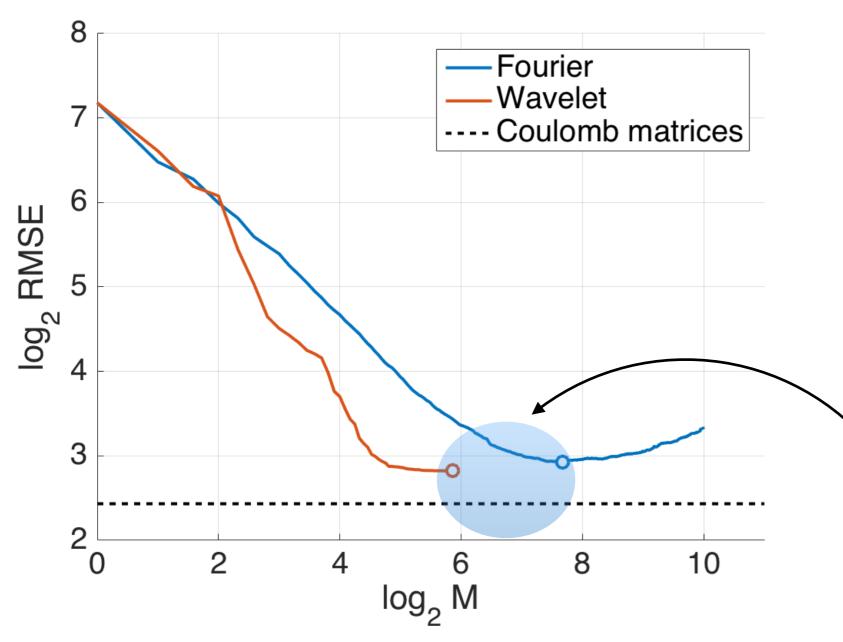


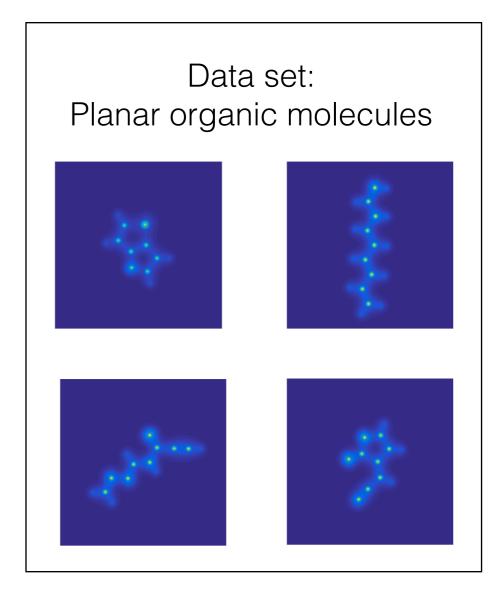
Data set: Planar organic molecules

Multiscale wavelet dictionary is sparser than Fourier dictionary

M-term regression error

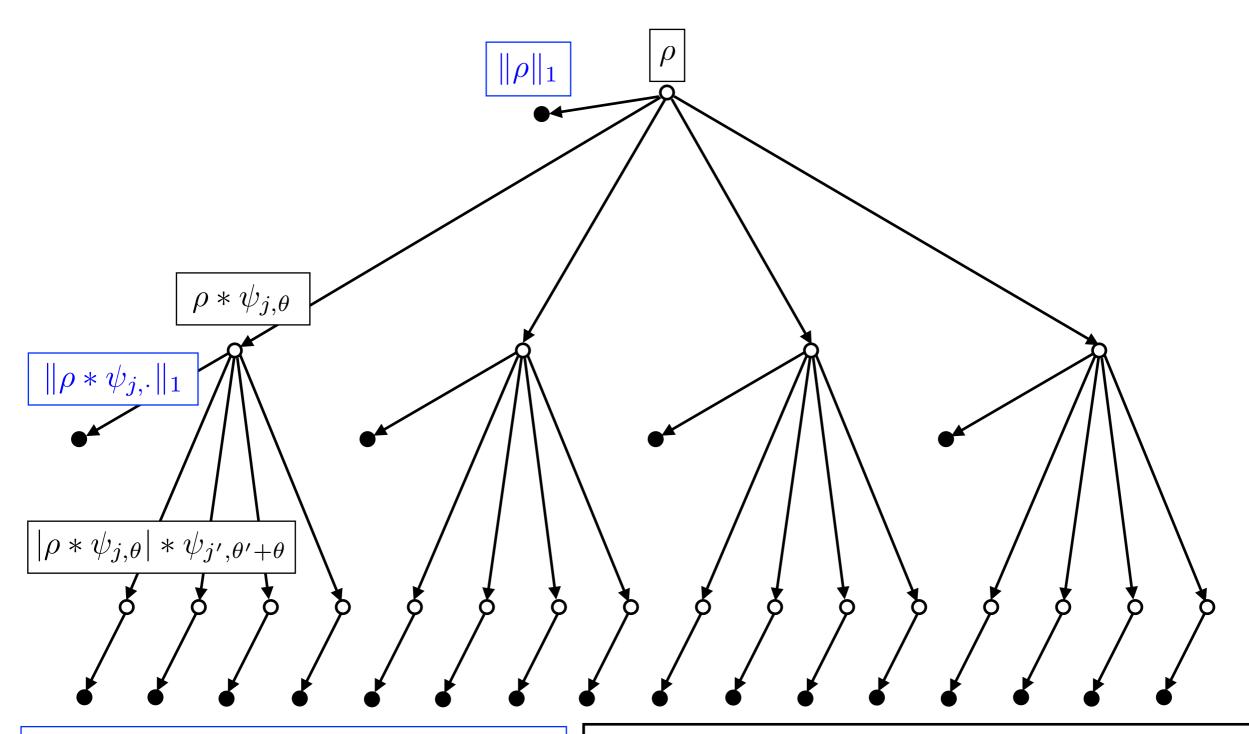






Coulomb matrices outperform both Fourier and wavelets

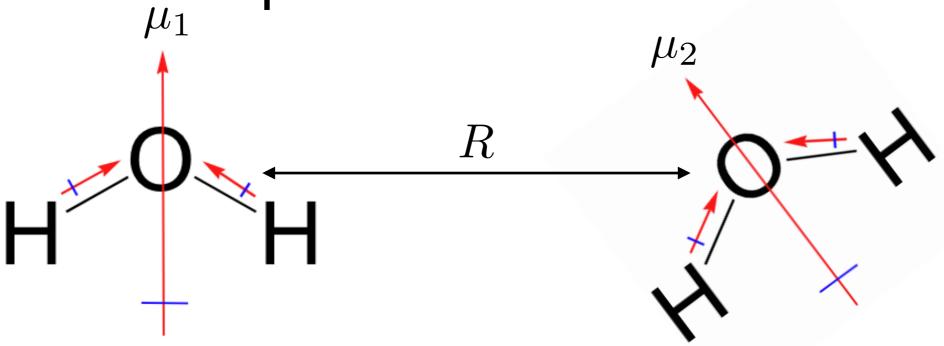
Invariant scattering operator



$$\| |\rho * \psi_{j,\cdot}| * \psi_{j',\theta'+\cdot} \|_1$$

Couples wavelet features at two scales to encode complex interactions that move across scales

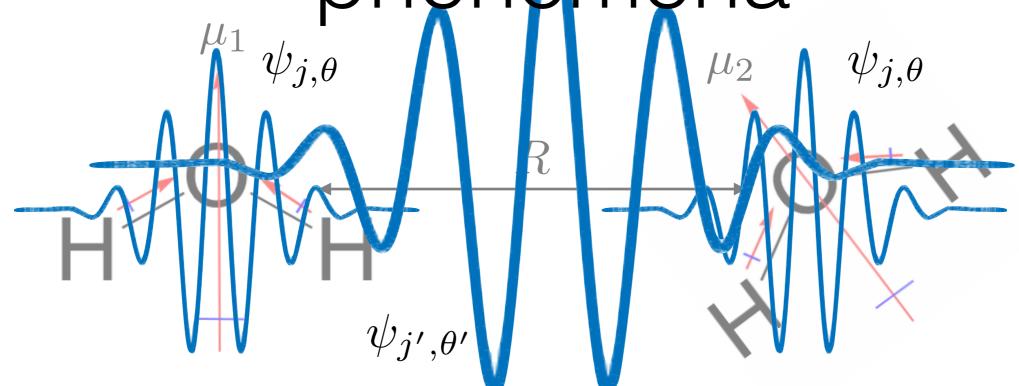
Coupled multiscale phenomena



Multipole expansion dipole-dipole moment:

$$\frac{\mu_1 \cdot \mu_2}{R^3}$$

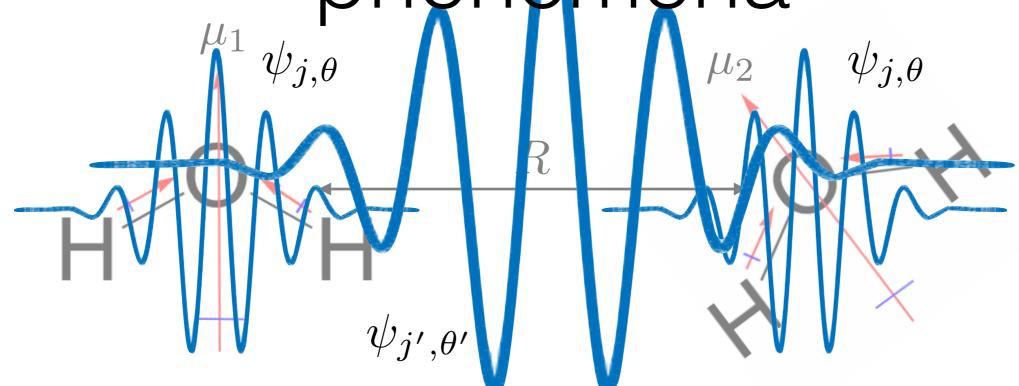
Coupled multiscale phenomena



Small scale wavelets $\psi_{j,\theta}$ can learn dipole orientations Large wavelets $\psi_{j',\theta'}$ can learn the distance between molecules But there is no linear expansion of the dipole-dipole moment as:

$$\frac{\mu_1 \cdot \mu_2}{R^3} \neq \sum_{j \text{ small}} w_j \|\rho * \psi_{j,.}\|_1 + \sum_{j' \text{ large}} w_{j'} \|\rho * \psi_{j',.}\|_1$$

Coupled multiscale phenomena



2nd order scattering features on the other hand:

First apply the small scale wavelet transform $\rho * \psi_{j,\theta} \dots$

...then apply the large scale wavelet transform $|\rho * \psi_{j,\theta}| * \psi_{j',\theta'+\theta}$

Intuition and numerical evidence supports (theory in progress):

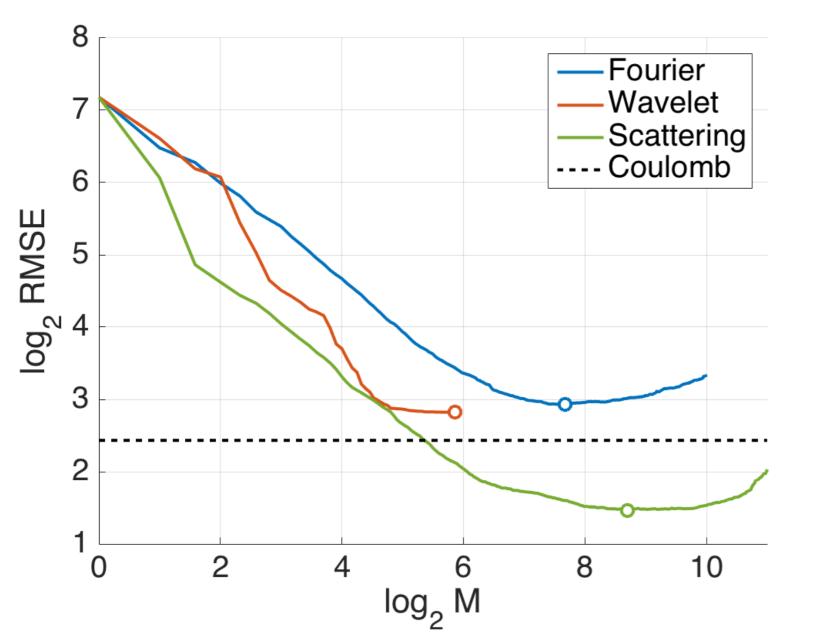
$$\frac{\mu_1 \cdot \mu_2}{R^3} \approx \sum_{j \text{ small } j' \text{ large } \theta'} \sum_{\theta'} w_{j,j',\theta'} || |\rho * \psi_{j,\cdot}| * \psi_{j',\theta'+\cdot}||_1$$

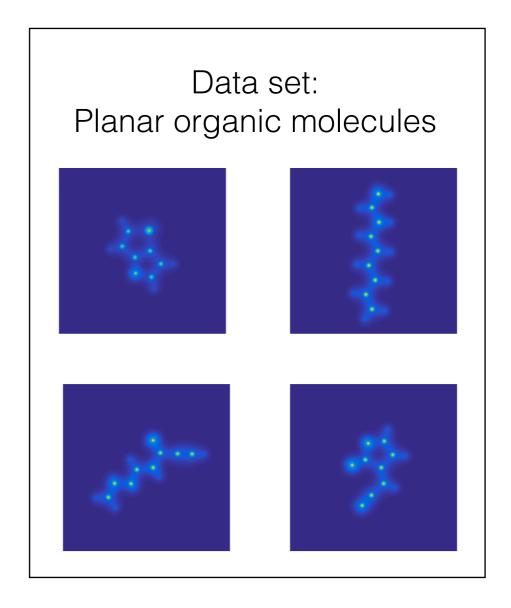
M-term regression error

$$\widetilde{f}_M(x) = \sum_{m=1}^M w_{k_m} \phi_{k_m}(x)$$

Errors (kcal/mol)

	Coulomb	Fourier	Wavelet	Scattering
MAE	2.4	5.3	5.4	1.7
RMSE	5.4	7.2	7.1	2.6

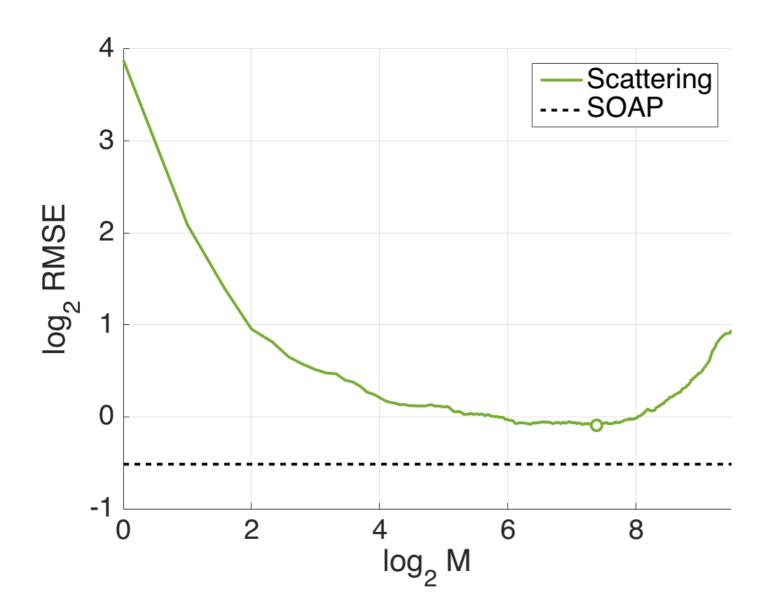




Water Molecules

Root mean square error (meV/atom)

	SOAP	Scattering
700 Training	0.70	0.94

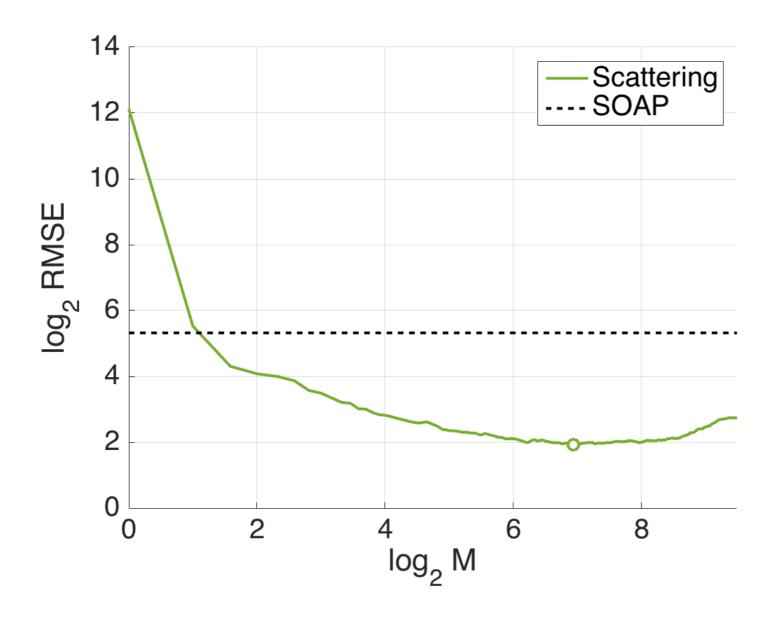


Long range interactions are $O(1/R^3)$ Data set: Water molecules

Water Lithium Ion Systems

Root mean square error (meV/atom)

	SOAP	Scattering
700 Training	40	3.8



Long range interactions are $O(1/R^2)$ Data set: Water & Lithium Ion

Future directions

- Efficient 3D software
- Rigorous link of scattering second layer with multipole methods
- Theoretical analysis of kinetic and exchange-correlation energies
- Utilization of forces
- Extensions to solid state physics, drug discovery, other many body problems in physics, other physical systems exhibiting complex multiscale behavior
- Connections with deep learning

Conclusions

To apply machine learning to many body problems, we must attack the curse of dimensionality. To do so we need to:

- Interpolate in low dimensional approximation spaces by...
- …nonlinear separation of original variables into learned non-interacting variables.

To achieve these goals, we utilize:

- Scale and angular separation over groups (translation, rotation)
- Symmetry and invariance properties
- Stability to deformations
- Cascade of operators (wavelet modulus) with the previous three properties to recover lost information