Beginning of Lecture 31

7.C Positive Operators and Isometries

Positive Operators

Definition 51. An operator $T \in \mathcal{L}(V)$ is positive if T is self-adjoint and

$$\forall v \in V, \langle Tv, v \rangle \ge 0.$$

Examples:

- 1. Orthogonal projections P_U (when U is a subspace of V)
- 2. T self-adjoint and $b, c \in \mathbb{R}$ such that $b^2 < 4c$, then $T^2 + bT + cI$ is a positive operator (see our proof proving that $T^2 + bT + cI$ is invertible)

Definition 52. An operator R is the square root of an operator T if $R^2 = T$.

Example: Suppose $T \in \mathcal{L}(\mathbb{R}^2)$ is a rotation by the angle $\theta \in [0, 2\pi)$, i.e.,

$$T = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

If R is a rotation by $\theta/2$,

$$R = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

then $R^2 = T$.

Positive operators mimic the numbers $[0, \infty)$. The next two theorems formalize this statement.

Theorem 30. Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

- 1. T is positive
- 2. T is self-adjoint and all eigenvalues of T are nonnegative
- 3. T has a positive square root

- 4. T has a self-adjoint square root
- 5. There exists and operator $R \in \mathcal{L}(V)$ such that $T = R^*R$

Proof. The plan is: $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1)$.

• (1) \Rightarrow (2): By definition T is self-adjoint. So let λ be an eigenvalue of T with eigenvector v (recall this means $v \neq 0$). Then:

$$0 \ge \langle Tv, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle = \lambda ||v||^2 \Rightarrow \lambda \ge 0$$

• (2) \Rightarrow (3): Since T is self-adjoint, by The Spectral Theorem there is an ONB e_1, \ldots, e_n of V consisting of eigenvectors of T; let $\lambda_1, \ldots, \lambda_n$ be the corresponding eigenvalues. By assumption each $\lambda_k \geq 0$. Define $R \in \mathcal{L}(V)$ be defining it on e_1, \ldots, e_n :

$$Re_k = \sqrt{\lambda_k} e_k$$

We claim that R is a positive operator and that $R^2 = T$. The second point is clear since:

$$R^2 e_k = \lambda_k e_k = T e_k, \forall k = 1, \dots, n$$

Thus \mathbb{R}^2 and \mathbb{T} agree on a basis and so they must be the same operator. Furthermore \mathbb{R} is positive since:

$$\begin{split} \langle Rv,v\rangle &= \left\langle R\left(\sum_{j=1}^n \langle v,e_j\rangle e_j\right), \sum_{k=1}^n \langle v,e_k\rangle e_k\right\rangle = \left\langle \sum_{j=1}^n \langle v,e_j\rangle Re_j, \sum_{k=1}^n \langle v,e_k\rangle e_k\right\rangle \\ &= \sum_{j=1}^n \sum_{k=1}^n \langle \langle v,e_j\rangle Re_j, \langle v,e_k\rangle e_k\rangle \\ &= \sum_{j=1}^n \sum_{k=1}^n \langle v,e_j\rangle \overline{\langle v,e_k\rangle} \langle Re_j,e_k\rangle \\ &= \sum_{j=1}^n \sum_{k=1}^n \langle v,e_j\rangle \overline{\langle v,e_k\rangle} \langle \sqrt{\lambda_j} e_j,e_k\rangle \\ &= \sum_{j=1}^n \sum_{k=1}^n \langle v,e_j\rangle \overline{\langle v,e_k\rangle} \sqrt{\lambda_j} \langle e_j,e_k\rangle \\ &= \sum_{j=1}^n \sqrt{\lambda_j} \cdot |\langle v,e_j\rangle|^2 \geq 0 \end{split}$$

- $(3) \Rightarrow (4)$: By definition
- (4) \Rightarrow (5): (4) means that $T = R^2$ and $R = R^*$. Thus: $T = R^2 = RR = R^*R$.
- (5) \Rightarrow (1): We need to show T is self-adjoint and $\langle Tv, v \rangle \geq 0$ for all $v \in V$. For the first part,

$$T^* = (R^*R)^* = R^*(R^*)^* = R^*R = T$$

For the second part,

$$\langle Tv, v \rangle = \langle R^*Rv, v \rangle = \langle Rv, Rv \rangle = ||Rv||^2 \ge 0, \ \forall v \in V$$

Theorem 31. Every positive operator has a unique positive square root.

Proof. Suppose $T \in \mathcal{L}(V)$ is positive. Since T is self-adjoint, by The Spectral Theorem it has an ONB \mathcal{B} of eigenvectors. Let $v \in \mathcal{B}$ be one of these eigenvectors, and let λ be its associated eigenvalue so that $Tv = \lambda v$. By the previous theorem $\lambda \geq 0$ and T has a positive square root, say R. We will prove that $Rv = \sqrt{\lambda}v$. Thus R will be uniquely determined on the basis \mathcal{B} , which means that it is the unique positive square root of T.

Now we prove that $Rv = \sqrt{\lambda}v$. Since R is positive, and hence self-adjoint, The Spectral Theorem impies that there exists an ONB e_1, \ldots, e_n of V consisting of eigenvectors of R. Let η_1, \ldots, η_n be the corresponding eigenvalues; because R is also positive, we know from the previous theorem that $\eta_k \geq 0$ for all k. Define $\lambda_k = \eta_k^2$; then $\sqrt{\lambda_k} = \eta_k$ and

$$Re_k = \sqrt{\lambda_k} e_k$$

Since e_1, \ldots, e_n is an ONB, we can write

$$v = \sum_{k=1}^{n} \langle v, e_k \rangle e_k$$

Thus:

$$Rv = \sum_{k=1}^{n} \langle v, e_k \rangle \sqrt{\lambda_k} e_k \Longrightarrow R^2 v = \sum_{k=1}^{n} \langle v, e_k \rangle \lambda_k e_k$$

But $R^2 = T$ and $Tv = \lambda v$, so $R^2v = Tv = \lambda v$ which implies:

$$\sum_{k=1}^{n} \langle v, e_k \rangle \lambda_k e_k = \sum_{k=1}^{n} \langle v, e_k \rangle \lambda e_k \Longrightarrow \sum_{k=1}^{n} \langle v, e_k \rangle (\lambda - \lambda_k) e_k = 0$$
$$\Longrightarrow \langle v, e_k \rangle (\lambda - \lambda_k) = 0, \ \forall k = 1, \dots, n$$

Hence either $\langle v, e_k \rangle = 0$ or $\lambda = \lambda_k$ for each k; thus:

$$\begin{split} v &= \sum_{\{k \,:\, \lambda_k = \lambda\}} \langle v, e_k \rangle e_k \Longrightarrow Rv = \sum_{\{k \,:\, \lambda_k = \lambda\}} \langle v, e_k \rangle \sqrt{\lambda_k} e_k \\ &= \sqrt{\lambda} \sum_{\{k \,:\, \lambda_k = \lambda\}} \langle v, e_k \rangle e_k = \sqrt{\lambda} v \end{split}$$

END OF LECTURE 31