Beginning of Lecture 24

Now we use the fact that $V = U \oplus U^{\perp}$ to define the orthogonal projection of V onto U.

Definition 46. Suppose U is a finite dimensional subspace of V.

The <u>orthogonal projection</u> of V onto U is the operator $P_U \in \mathcal{L}(V)$ defined as:

$$P_U v = u$$
, where $v = u + w$, $u \in U$, $w \in U^{\perp}$

Remark: Since the decomposition $v = u + w \in U \oplus U^{\perp}$ is unique, the orthogonal projection P_U is well defined.

Example: Recall from earlier we have: If $u, v \in V$ and $u \neq 0$, then

$$v = cu + w, \quad \langle u, w \rangle = 0, \quad c = \frac{\langle v, u \rangle}{\|u\|^2}$$

Thus if $U = \operatorname{span}(u)$, then

$$P_U v = cu = \frac{\langle v, u \rangle}{\|u\|^2} u$$

More generally, if U is an arbitrary finite dimensional subspace of V and e_1, \ldots, e_m is an ONB for U, then:

$$P_U v = \sum_{k=1}^{m} \langle v, e_k \rangle e_k \tag{14}$$

This is just one of many properties of P_U :

Proposition 47. If U is a finite dimensional subspace of V and $v \in V$, then:

- 1. $P_U \in \mathcal{L}(V)$
- 2. $P_U u = u \ \forall u \in U$
- 3. $P_U w = 0 \ \forall w \in U^{\perp}$
- 4. range $P_U = U$
- 5. null $P_U = U^{\perp}$

6.
$$v - P_U v \in U^{\perp}$$

7.
$$P_U^2 = P_U$$

8.
$$||P_Uv|| \le ||v||$$

Proof. We prove each part:

- 1. This follows from (14) and the linearity of the inner product in the first argument.
- 2. If $u \in U$, then $u = u + 0 \in U \oplus U^{\perp}$, and thus $P_U u = u$.
- 3. If $w \in U^{\perp}$, then $w = 0 + w \in U \oplus U^{\perp}$, and thus $P_U w = 0$.
- 4. This is clear
- 5. Part 3 implies that $U^{\perp} \subset \text{null } P_U$. Now suppose that $v \in \text{null } P_U$, i.e., $P_U v = 0$. Then if $v = u + w \in U \oplus U^{\perp}$, we must have $P_U v = u = 0$, which implies that $v = 0 + w = w \in U^{\perp}$ and so null $P_U \subset U^{\perp}$.
- 6. If $v = u + w \in U \oplus U^{\perp}$, then:

$$v - P_U v = (u + w) - u = w \in U^{\perp}$$

7. If $v = u + w \in U \oplus U^{\perp}$ then:

$$(P_U^2)v = P_U(P_Uv) = P_Uu = u = P_Uv$$

8. If $v = u + w \in U \oplus U^{\perp}$ then:

$$||P_U v||^2 = ||u||^2 \le ||u||^2 + ||w||^2 = ||v||^2$$

We now turn to a very important minimization problem: Given a subspace U of V and a point $v \in V$, find a point $u_0 \in U$ such that $||v - u_0||$ is as small as possible. In other words, find $u_0 \in U$ such that:

$$||v - u_0|| = \min_{u \in U} ||v - u|| \iff ||v - u_0|| \le ||v - u||, \ \forall u \in U$$

In fact the orthogonal projection gives the solution!

Theorem 24. Suppose U is a finite dimensional subspace of V, $v \in V$, and $u \in U$. Then:

$$||v - P_U v|| \le ||v - u||.$$

Furthermore,

$$||v - P_U v|| = ||v - u|| \Longleftrightarrow u = P_U v$$

Proof. We have:

$$||v - P_U v||^2 \le ||\underbrace{v - P_U v}_{\in U^{\perp}}||^2 + ||\underbrace{P_U v - u}_{\in U}||^2$$
$$= ||(v - P_U v) + (P_U v - u)||^2$$
$$= ||v - u||^2$$

The inequality is an equality if and only if:

$$||v - P_U v|| = ||v - u|| \Leftrightarrow ||v - P_U v||^2 = ||v - P_U v||^2 + ||P_U v - u||^2$$

 $\Leftrightarrow ||P_U v - u||^2 = 0$
 $\Leftrightarrow P_U v = u$

Please read the very interesting Example 6.58 in the book.

END OF LECTURE 24