Beginning of Lecture 21

Example: Let's use Gram-Schmidt find an orthonormal basis of $\mathcal{P}_2([-1,1];\mathbb{R})$ with the inner product:

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) dx.$$

Let's start with the standard basis $1, x, x^2$ which is linearly independent but not orthonormal. We start by computing:

$$||1||^2 = \int_{-1}^{1} 1^2 dx = 2$$

Thus:

$$e_1 = 1/\|1\| = 1/\sqrt{2}$$

Now we need to compute e_2 . So we compute:

$$(x - \langle x, e_1 \rangle e_1 = x - \left(\int_{-1}^1 x \frac{1}{\sqrt{2}} dx \right) \frac{1}{\sqrt{2}} = x$$

and also:

$$||x - \langle x, e_1 \rangle e_1||^2 = ||x||^2 = \int_{-1}^1 x^2 dx = \frac{2}{3}.$$

Thus:

$$e_2 = \frac{x - \langle x, e_1 \rangle e_1}{\|x - \langle x, e_1 \rangle e_1\|} = \sqrt{\frac{3}{2}}x$$

Now we need to compute e_3 . We have:

$$x^{2} - \langle x^{2}, e_{1} \rangle e_{1} - \langle x^{2}, e_{2} \rangle e_{2} = x^{2} - \left(\int_{-1}^{1} x^{2} \frac{1}{\sqrt{2}} dx \right) \frac{1}{\sqrt{2}} - \left(\int_{-1}^{1} x^{2} \sqrt{\frac{3}{2}} x dx \right) \sqrt{\frac{3}{2}} x$$
$$= x^{2} - \frac{1}{3}$$

and also

$$||x^{2} - \langle x^{2}, e_{1} \rangle e_{1} - \langle x^{2}, e_{2} \rangle e_{2}||^{2} = \left| \left| x^{2} - \frac{1}{3} \right| \right|^{2}$$

$$= \int_{-1}^{1} \left(x^{2} - \frac{1}{3} \right)^{2} dx$$

$$= \int_{-1}^{1} \left(x^{4} - \frac{2}{3} x^{2} + \frac{1}{9} \right) dx = \frac{8}{45}.$$

Hence:

$$e_3 = \sqrt{\frac{45}{8}} \left(x^2 - \frac{1}{3} \right).$$

Thus

$$\mathcal{B} = \frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}x, \sqrt{\frac{45}{8}}(x^2 - 1/3)$$

is an orthonormal basis for $\mathcal{P}_2([-1,1];\mathbb{R})$.

The Gram-Schmidt algorithm can be used to prove several useful facts, which we do now.

Proposition 41. Every finite dimensional inner product space has an orthonormal basis.

Proof. Choose any basis of V and apply the Gram-Schmidt algorithm to it to get an orthonormal basis.

Just as we can extend any linearly independent list to a basis, we can also extend any orthonormal list to an orthonormal basis.

Proposition 42. If V is a finite dimensional inner product space, then every list of orthonormal vectors in V can be extended to an orthonormal basis of V.

Proof. Let $e_1, \ldots, e_m \in V$ be an orthonormal list. Since they are linearly independent, we can extend them to a basis:

$$e_1,\ldots,e_m,v_1,\ldots,v_n$$

Now apply the Gram-Schmidt algorithm to this basis. Since e_1, \ldots, e_m are orthonormal, as you can verify the Gram-Schmidt algorithm will leave them unchanged. Thus we get an orthonormal basis of the form:

$$e_1,\ldots,e_m,f_1,\ldots,f_n$$

Now we return to upper-triangular matrices. Recall that we previously showed that if V is a finite dimensional complex vector space, then for each $T \in \mathcal{L}(V)$ there is a basis \mathcal{B} such that $\mathcal{M}(T;\mathcal{B})$ is upper triangular. When V is an inner product space, we would like to take \mathcal{B} to be an orthonormal basis.

Proposition 43. Suppose $T \in \mathcal{L}(V)$. If $\mathcal{M}(T; \mathcal{B})$ is upper triangular for some basis \mathcal{B} , then there exists an orthonormal basis \mathcal{B}' such that $\mathcal{M}(T; \mathcal{B}')$ is upper triangular.

Proof. Suppose $\mathcal{M}(T; \mathcal{B})$ is upper triangular and $\mathcal{B} = v_1, \ldots, v_n$. Then $U_k = \operatorname{span}(v_1, \ldots, v_k)$ is invariant under T for each $k = 1, \ldots, n$.

Apply the Gram-Schmidt algorithm to \mathcal{B} , producing an orthonormal basis $\mathcal{B}' = e_1, \ldots, e_n$. We claim \mathcal{B}' is the desired basis. Indeed,

$$\operatorname{span}(e_1,\ldots,e_k)=\operatorname{span}(v_1,\ldots,v_k)=U_k,\quad\forall\,k=1,\ldots,n.$$

Therefore span (e_1, \ldots, e_k) is invariant under T for each $k = 1, \ldots, n$. Thus $\mathcal{M}(T; \mathcal{B}')$ is upper triangular.

Remark: The above proposition holds for any inner product space and operator T for which there exists some basis \mathcal{B} such that $\mathcal{M}(T;\mathcal{B})$ is upper triangular. In particular, V can be a real vector space, if such a \mathcal{B} exists. Of course when V is a complex vector space, we can guarantee the result...

Theorem 22 (Schur's Theorem). If V is a finite dimensional complex inner product space and $T \in \mathcal{L}(V)$, then there exists an orthonormal basis \mathcal{B}' such that $\mathcal{M}(T; \mathcal{B}')$ is upper triangular.

Proof. Since V is a finite dimensional complex vector space, there exists a basis \mathcal{B} such that $\mathcal{M}(T;\mathcal{B})$ is upper triangular. Now apply the previous proposition.

END OF LECTURE 21