Beginning of Lecture 19

Theorem 19 (Triangle Inequality). Suppose $u, v \in V$. Then:

$$||u + v|| \le ||u|| + ||v||,$$

with equality if and only if u = cv for $c \ge 0$.

Proof. For the first part:

$$||u+v||^{2} = \langle u+v, u+v \rangle$$

$$= \langle u, u \rangle + \langle v, v \rangle + \langle u, v \rangle + \langle v, u \rangle$$

$$= \langle u, u \rangle + \langle v, v \rangle + \langle u, v \rangle + \overline{\langle u, v \rangle}$$

$$= ||u||^{2} + ||v||^{2} + 2\operatorname{Re}\langle u, v \rangle$$

$$\leq ||u||^{2} + ||v||^{2} + 2|\langle u, v \rangle|$$

$$\leq ||u||^{2} + ||v||^{2} + 2||u|| ||v|| \quad \text{[Cauchy-Schwarz]}$$

$$= (||u|| + ||v||)^{2}$$

The proof above shows that equality holds if and only if:

- 1. $\operatorname{Re}\langle u, v \rangle = |\langle u, v \rangle|$, and
- 2. $|\langle u, v \rangle| = ||u|| ||v||$

From the Cauchy-Schwartz inequality, we know #2 holds if and only if u = cv for some $c \in \mathbb{F}$. For #1, consider an arbitrary $\lambda = a + ib \in \mathbb{C}$, where $a, b \in \mathbb{R}$. Then $\text{Re}\lambda = a$ and $|\lambda| = \sqrt{a^2 + b^2}$, so $\text{Re}\lambda = |\lambda|$ if and only if $\lambda = a \geq 0$. Thus #1 holds if and only if $\langle u, v \rangle \geq 0$, which combined with u = cv, implies that equality holds if and only if $c \geq 0$.

The next result is the Parallelogram Equality, which also has a geometric interpretation in \mathbb{R}^2 ; see Figure 7.

Proposition 38. Suppose $u, v \in V$. Then:

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2)$$

Proof. Simply compute:

$$||u + v||^{2} + ||u - v||^{2} = \langle u + v, u + v \rangle + \langle u - v, u - v \rangle$$

$$= ||u||^{2} + ||v||^{2} + \langle u, v \rangle + \langle v, u \rangle + ||u||^{2} + ||v||^{2} - \langle u, v \rangle + \langle v, u \rangle$$

$$= 2(||u||^{2} + ||v||^{2})$$

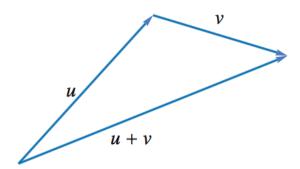


Figure 6: The triangle inequality for \mathbb{R}^2

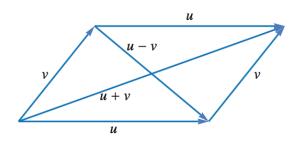


Figure 7: Parallelogram equality in \mathbb{R}^2

6.B Orthonormal Bases

Definition 41. A list of vectors $e_1, \ldots, e_m \in V$ is <u>orthonormal</u> if

$$\langle e_j, e_k \rangle = \left\{ \begin{array}{ll} 1 & \text{if } j = k & [\text{norm 1}] \\ 0 & \text{if } j \neq k & [\text{orthogonal}] \end{array} \right\} = \delta(j - k),$$

where

$$\delta: \mathbb{Z} \to \mathbb{C}, \quad \delta(0) = 1 \text{ and } \delta(n) = 0, \ \forall n \neq 0.$$

Examples:

- 1. The standard basis in \mathbb{F}^n
- 2. Recalls the vector space $V = \{f : \mathbb{Z}_N \to \mathbb{C}\}$, where $\mathbb{Z}_N = \{0, \dots, N-1\}$, and the Fourier basis:

$$e_k: \mathbb{Z}_N \to \mathbb{C}, \quad e_k(n) = \frac{1}{\sqrt{N}} e^{2\pi i k n/N}.$$

Define an inner product on this vector space:

$$\langle f, g \rangle = \sum_{n=0}^{N-1} f(n) \overline{g(n)}$$

Now V is an inner product space and e_0, \ldots, e_{N-1} is an orthonormal list. We can verify this:

$$\begin{split} \langle e_j, e_k \rangle &= \sum_{n=0}^{N-1} e_j(n) \overline{e_k(n)} \\ &= \frac{1}{N} \sum_{n=0}^{N-1} e^{2\pi i j n/N} e^{-2\pi i k n/N} \\ &= \frac{1}{N} \sum_{n=0}^{N-1} e^{2\pi i (j-k)n/N} \\ &= \left\{ \frac{1}{N} \sum_{n=0}^{N-1} 1 = \frac{1}{N} \cdot N = 1 & \text{if } j = k \\ \frac{1}{N} \cdot \frac{1 - (e^{2\pi i (j-k)/N})^N}{1 - e^{2\pi i (j-k)/N}} = \frac{1}{N} \cdot \frac{1 - e^{2\pi i (j-k)/N}}{1 - e^{2\pi i (j-k)/N}} = 0 & \text{if } j \neq k \\ \end{split}$$

Since e_0, \ldots, e_{N-1} is also a basis, we call it an orthonormal basis.

Definition 42. An <u>orthonormal basis</u> of V is an orthonormal list of vectors in V that is also a basis of V.

END OF LECTURE 19