## Enumeration of Harmonic Frames and Frame **Based Dimension Reduction**

Matthew J. Hirn

Norbert Wiener Center Department of Mathematics University of Maryland, College Park

Ph.D. Final Oral Exam University of Maryland, College Park July 24, 2009

Matthew J. Hirn



## **Committee Members**

- Professor John J. Benedetto, advisor and chair
- Professor Kasso A. Okoudjou, co-advisor
- Professor Radu Balan
- Professor Rama Chellappa, dean's representative
- Professor Lawrence Washington





### Outline

- Overview of Finite Frames
- Enumeration of Prime Order Harmonic Frames
  - Harmonic Frames
  - Enumeration
  - Proof
- Frame Based Dimension Reduction
  - Hyperspectral Imagery Data
  - The Algorithm
  - Results





### Outline

- Overview of Finite Frames
- Enumeration of Prime Order Harmonic Frames
  - Harmonic Frames
  - Enumeration
  - Proof
- Frame Based Dimension Reduction
  - Hyperspectral Imagery Data
  - The Algorithm
  - Results





## **Finite Frames**

• Let  $\Phi = \{\varphi_i\}_{i=1}^s \subset \mathbb{F}^d$ , where  $\mathbb{F} = \mathbb{R}$  or  $\mathbb{C}$ .

#### Definition

 $\Phi = \{\varphi_i\}_{i=1}^s$  is a *finite frame* for  $\mathbb{F}^d$  if there exists A, B > 0 such that

$$A||y||^2 \le \sum_{i=1}^s |\langle y, \varphi_i \rangle|^2 \le B||y||^2, \quad \forall y \in \mathbb{F}^d.$$

- If  $\|\varphi_i\| = 1$  for all  $i = 1, \dots, s$ , then  $\Phi$  is a *unit norm frame*.
- If we can take A = B in the definition, then  $\Phi$  is a *tight frame*.
- If  $\Phi$  is unit norm and tight, then  $\Phi$  is a *finite unit norm tight frame*, or FUNTF, and we can take A = B = s/d.
- $\Phi$  is a frame for  $\mathbb{F}^d$  if and only if  $\operatorname{span}(\Phi) = \mathbb{F}^d$ .



# Frame Theory

### Definition

For a frame  $\Phi = \{\varphi_i\}_{i=1}^s$ , the frame operator  $S: \mathbb{F}^d \longrightarrow \mathbb{F}^d$  is

$$S(y) = \sum_{i=1}^{s} \langle y, \varphi_i \rangle \varphi_i.$$

- S is invertible.
- For each  $y \in \mathbb{F}^d$ , we have the following frame representation:

$$y = \sum_{i=1}^{s} \langle y, S^{-1}(\varphi_i) \rangle \varphi_i.$$

• If  $\Phi$  is a FUNTF, then S(y) = (s/d)y for all  $y \in \mathbb{F}^d$ .



### **Outline**

- Overview of Finite Frames
- Enumeration of Prime Order Harmonic Frames
  - Harmonic Frames
  - Enumeration
  - Proof
- Frame Based Dimension Reduction
  - Hyperspectral Imagery Data
  - The Algorithm
  - Results





### **DFT-FUNTFs**

• Define the  $s \times s$  Discrete Fourier Transform (DFT) matrix as:

$$D_s = (e^{2\pi i m n/s})_{m,n=0}^{s-1}.$$

Define the group of integers mod s as:

$$\mathbb{Z}_s = \mathbb{Z}/s\mathbb{Z} = \{0, \dots, s-1 \mod s\}.$$

#### Definition

Choose  $d \leq s$  distinct columns of  $D_s$ , say  $n = (n_1, \dots, n_d) \in \mathbb{Z}_s^d$ , and define  $\Phi_n = \{\varphi_m : m \in \mathbb{Z}_s\}$  as

$$\varphi_m = \frac{1}{\sqrt{d}} (e^{2\pi i m n_j/s})_{j=1}^d, \quad \forall m \in \mathbb{Z}_s.$$

 $\Phi_n$  is a FUNTF for  $\mathbb{C}^d$ , and any frame of this type is called a *DFT-FUNTF*. Call  $n=(n_1,\ldots,n_d)$  the *generators* of  $\Phi_n$ .



## Characters

- Harmonic frames are generalization of DFT-FUNTFs.
- Let G denote a finite abelian group,  $G = \{g_i\}_{i=1}^s$ .

### Definition

A *character* of a finite abelian group G is a group homomorphism  $\xi:G\longrightarrow \mathbb{C}^{\times}$  that satisfies

$$\xi(g_ig_j) = \xi(g_i)\xi(g_j), \quad \forall g_i, g_j \in G.$$

- For each  $g_i \in G$ ,  $\xi(g_i)$  is a s-th root of unity.
- There are exactly s characters,  $\{\xi_i\}_{i=1}^s$ .
- The *character table* of *G* is the matrix  $(\xi_i(g_j))_{i,j=1}^s$ .
- When  $G \cong \mathbb{Z}_s$ , the character table of G is  $D_s$ .





## Harmonic Frames

• Let  $\mathcal{U}(\mathbb{C}^d)$  denote the group of unitary transformations (matrices) on  $\mathbb{C}^d$ :

$$\mathcal{U}(\mathbb{C}^d) = \{ U \in \mathcal{M}_{d \times d}(\mathbb{C}) : U^*U = UU^* = I_{d \times d} \}.$$

#### Definition

Let  $\mathcal{I}\subseteq\{1,\ldots,s\}$  such that  $|\mathcal{I}|=d$ . Then for any  $U\in\mathcal{U}(\mathbb{C}^d)$  the set

$$\Phi = \{U(\xi_i(g_j))_{i \in \mathcal{I}}\}_{j=1}^s \subset \mathbb{C}^d,$$

is a frame for  $\mathbb{C}^d$  and is called a *harmonic frame*.



# **Equivalence Classes of Harmonic Frames**

### Definition

Two harmonic frames  $\Phi = \{\varphi_i\}_{i=1}^s \subset \mathbb{C}^d$  and  $\Psi = \{\psi_i\}_{i=1}^s \subset \mathbb{C}^d$  are said to be *equivalent* if there exists  $U \in \mathcal{U}(\mathbb{C}^d)$  such that

$$\{\varphi_i\}_{i=1}^s = \{U\psi_i\}_{i=1}^s.$$

We denote this equivalence relation as  $\Phi \sim \Psi$ .

• Let  $[\Phi]$  denote an equivalence class of harmonic frames with representative  $\Phi$ .





## **Introduction to the Enumeration Problem**

- Goal: Enumerate inequivalent harmonic frames, i.e. count the number of equivalence classes.
- Results: Exact, recursive formula for the number of inequivalent, prime order harmonic frames (i.e. when s is prime).
- The prime order case is simpler than the general case in part because there is only one prime order abelian group, namely  $\mathbb{Z}_s$ .
- This work builds upon results by:
  - Vale and Waldron (2005) developed harmonic frames.
  - Hay and Waldron (2006) wrote a computer program that computes all harmonic frames for a given s and d; conjectured that the number of inequivalent harmonic frames is  $\mathcal{O}(s^{d-1})$ .





# Setup for the Main Result

 For a fixed s (prime) and d (d ≤ s), we backwards recursively define the set:

$$\{\gamma_c \in \mathbb{N} \cup \{0\} : c \in \mathbb{N}, c \mid s-1, \text{ and } c \mid d \text{ or } c \mid d-1\}.$$

• If c | s - 1, c | d, and c > 1, then:

$$\gamma_c = \frac{(s-1-c)(s-1-2c)\cdots(s-1-(\frac{d}{c}-1)c)}{c^{\frac{d}{c}-1}(d/c)!} - \frac{c}{s-1} \sum_{\substack{c < b < s \\ c|b, b|d}} \left(\frac{s-1}{b}\right) \gamma_b.$$

- If  $c \mid s-1, c \mid d-1$ , and c > 1 then we define  $\gamma_c$  similarly simply replace d with d-1.
- For c = 1, define

$$\gamma_1 = \frac{1}{s-1} \binom{s}{d} - \sum_{\substack{c \mid d \ c>1}} \frac{\gamma_c}{c} - \sum_{\substack{c \mid d-1 \ c>1}} \frac{\gamma_c}{c}.$$



## The Main Result

### **Theorem**

Let s be a prime number and let 1 < d < s. Define constants  $\gamma_c$  as in the previous slide. The total number of inequivalent harmonic frames for  $\mathbb{C}^d$  with s elements is given by:

$$\gamma_1 + \sum_{\substack{c|d\\c>1}} \gamma_c + \sum_{\substack{c|d-1\\c>1}} \gamma_c.$$

### Corollary

Let s be any prime number and fix d such that 1 < d < s. Then the number of inequivalent harmonic frames for  $\mathbb{C}^d$  with s elements is  $\mathcal{O}(s^{d-1})$ .





## **Outline of Proof**

The proof of the theorem requires three main steps:

- Simplify what it means for two harmonic frames to be equivalent.
- ② Using the simplified notion of equivalence, bijectively map the equivalence classes  $[\Phi]$  to a new space.
- Ocunt the objects in this new space, where it is easier to do so.





# **Inequivalent DFT-FUNTFs**

- First note that since s is prime, every harmonic frame is derived from the character table of  $\mathbb{Z}_s$ , which is  $D_s$ .
- Therefore every harmonic frame is of the form  $U\Phi_n$ , where  $U \in \mathcal{U}(\mathbb{C}^d)$  and  $\Phi_n$  is a DFT-FUNTF.
- Thus we need only to find the number of inequivalent DFT-FUNTFs.





# A New Equivalence Relation

• For  $k \in \mathbb{Z}$ , k > 0, let  $S_k$  denote the set of permutations on k elements.

#### Lemma

Let s be a prime number. If  $\Phi_n = \{\varphi_m : m \in \mathbb{Z}_s\}$  and  $\Psi_{n'} = \{\psi_m : m \in \mathbb{Z}_s\}$  are DFT-FUNTFs, then

$$\exists \ \sigma_1 \in S_s, \ \sigma_2 \in S_d \ \textit{such that}$$
 
$$\Phi_n \sim \Psi_{n'} \iff \varphi_m(k) = \psi_{\sigma_1(m)}(\sigma_2(k))$$
 
$$\forall \ m \in \mathbb{Z}_s, \ k = 1, \dots, d.$$



# The Set $\mathbb{A}^d_s$

- Let  $n=(n_1,\ldots,n_d)\in\mathbb{Z}_s^d$  be the generators of the DFT-FUNTF  $\Phi_n$ .
- In fact, since  $n_i \neq n_j$  for  $i \neq j$ , all such d-tuples lie in the set:

$$\tilde{\mathbb{Z}}_s^d = \{n = (n_1, \dots, n_d) \in \mathbb{Z}_s^d : n_i \neq n_j, \ \forall i \neq j\}.$$

ullet Consider the following equivalence relation on  $\tilde{\mathbb{Z}}_s^d$ :

$$(n_1,\ldots,n_d)\sim (n'_1,\ldots,n'_d)\iff \exists\ \sigma\in S_d\ s.t.\ (n_1,\ldots,n_d)=(n'_{\sigma(1)},\ldots,n'_{\sigma(d)}).$$

ullet Denote an equivalence class of  $\sim$  by the representative

$$[n] = [n_1, \ldots, n_d].$$

• Define the set of all equivalence classes as  $\mathbb{A}^d_s = \tilde{\mathbb{Z}}^d_s / \sim$ .



# Orbits of $\mathbb{A}^d_s$

- Let  $\mathbb{Z}_s^{\times}$  denote the group of units of  $\mathbb{Z}_s$ , which, when s is prime, is the set  $\{1, \ldots, s-1 \mod s\}$  endowed with multiplication.
- We define the group action  $\pi: \mathbb{Z}_s^{\times} \times \mathbb{A}_s^d \longrightarrow \mathbb{A}_s^d$  as:

$$\pi(m, [n]) = m \cdot [n] = [mn_1, \dots, mn_d], \quad \forall m \in \mathbb{Z}_s^{\times}, \ \forall [n] \in \mathbb{A}_s^d.$$

• The orbits of  $\pi$  are the sets

$$\mathcal{O}_{[n]} = \{m \cdot [n] = [mn_1, \dots, mn_d] : m \in \mathbb{Z}_s^{\times}\}.$$

• Note that the orbits  $\mathcal{O}_{[n]}$  partition the set  $\mathbb{A}^d_s$ .



# Harmonic Frames and Orbits of $\mathbb{A}^d_s$

 Using the previous lemma, one can prove the following proposition.

### **Proposition**

There is a one-to-one correspondence between the equivalence classes of harmonic frames and the orbits of  $\mathbb{A}^d_s$  under the group action  $\pi$ . In particular:

$$[\Phi_n] \longleftrightarrow \mathcal{O}_{[n]}.$$

• Thus we have replaced counting the equivalence classes  $[\Phi_n]$ with the problem of counting the number of orbits  $\mathcal{O}_{[n]}$ .



# The size of $\mathcal{O}_{[n]}$

#### **Theorem**

Let s be a prime number and let 1 < d < s. If  $\mathcal{O}_{[n]}$  is an orbit of  $\mathbb{A}^d_s$  under the group action  $\pi$ , then there exists  $c \in \mathbb{N}$  such that either  $c \mid d$  or  $c \mid d-1$ , and

$$|\mathcal{O}_{[n]}| = (s-1)/c.$$

Furthermore, the total number of orbits of order (s-1)/c is given by  $\gamma_c$ .

• Thus the total number of orbits of  $\mathbb{A}^d_s$  is given by:

$$\gamma_1 + \sum_{\substack{c \mid d \\ c > 1}} \gamma_c + \sum_{\substack{c \mid d-1 \\ c > 1}} \gamma_c.$$



### **Outline**

- Overview of Finite Frames
- Enumeration of Prime Order Harmonic Frames
  - Harmonic Frames
  - Enumeration
  - Proof
- Frame Based Dimension Reduction
  - Hyperspectral Imagery Data
  - The Algorithm
  - Results





## Color Image







Red



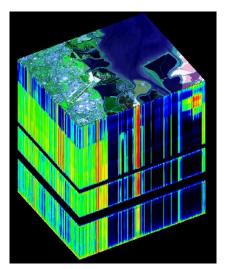


# Hyperspectral Imagery Data





# Hyperspectral Data Cube







# Overview of Hyperspectral Imagery Data

- Hyperspectral imagery (HSI) data is characterized by the narrowness and contiguous nature of the measurements.
- HSI data sets are spectrally overdetermined, and thus provide ample spectral information to distinguish between spectrally similar (but unique) materials.
- HSI data sets can be useful for the following purposes:
  - target detection
  - material classification
  - material identification
  - mapping details of surface properties



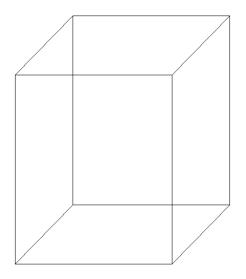


# Overview of Hyperspectral Imagery Data

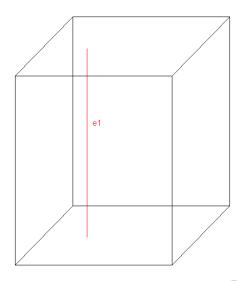
- Hyperspectral imagery (HSI) data is characterized by the narrowness and contiguous nature of the measurements.
- HSI data sets are spectrally overdetermined, and thus provide ample spectral information to distinguish between spectrally similar (but unique) materials.
- HSI data sets can be useful for the following purposes:
  - target detection
  - material classification
  - material identification
  - mapping details of surface properties



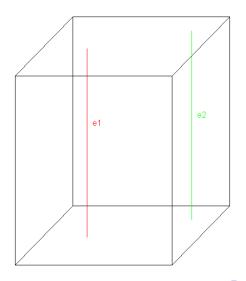




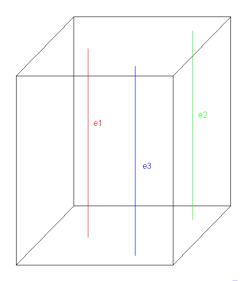




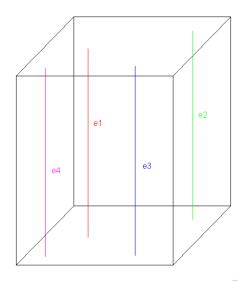














## **Endmember Definition**

- Assume our HSI data set is an  $N_1 \times N_2 \times D$  cube.
  - $N_1$ ,  $N_2$  spatial dimensions;  $N = N_1 N_2$  pixels.
  - *D* is the spectral dimension; so *D* wavelengths measured.
- Let  $X = \{x_i\}_{i=1}^N \subset \mathbb{R}^D$  denote the pixel vectors of the HSI data set in list form.

### Definition

Endmembers are a collection of a scene's constituent spectra. If  $E = \{e_i\}_{i=1}^{s}$  are endmembers, then the linear mixture model is

$$x_i = \sum_{j=1}^s \alpha_{i,j} e_j + N_{x_i}, \quad \forall x_i \in X,$$

where  $N_{x_i}$  is a noise vector.



# Introduction to the Algorithm

### We have two goals:

- Map the high dimensional HSI data set X to an appropriate low dimensional space Y.
- Represent the low dimensional space Y for the purposes of material classification.

We achieve these goals via two existing mathematical theories:

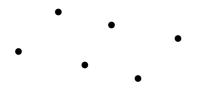
- We use kernel eigenmap methods to determine the space Y.
- ② We represent Y with an overcomplete endmember set  $\Phi$ , also known as a frame.





# Introduction to Kernel Eigenmap Methods

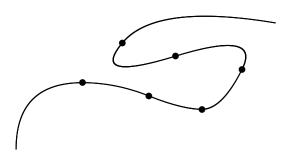
- Given a high dimensional data set  $X = \{x_i\}_{i=1}^N \subset \mathbb{R}^D$ , we assume X lies on a low dimensional manifold  $M^d$  (d < D).
- Kernel eigenmap methods map the vectors in X to d-dimensional coordinates  $Y = \{y_i\}_{i=1}^N \subset \mathbb{R}^d$  that preserve the underlying geometry of  $M^d$ .





# Introduction to Kernel Eigenmap Methods

- Given a high dimensional data set  $X = \{x_i\}_{i=1}^N \subset \mathbb{R}^D$ , we assume X lies on a low dimensional manifold  $M^d$  (d < D).
- Kernel eigenmap methods map the vectors in X to d-dimensional coordinates  $Y = \{y_i\}_{i=1}^N \subset \mathbb{R}^d$  that preserve the underlying geometry of  $M^d$ .





# Basics of Kernel Eigenmap Methods

The main components of kernel eigenmap methods are:

• Construction of an  $N \times N$  symmetric, positive semi-definite kernel K,

$$K_{i,j}=K(x_i,x_j).$$

- Diagonalization of K and then choosing  $d \leq D$  significant orthogonal eigenvectors of K, denoted by  $v_1, \ldots, v_d$ .
- Map each  $x_i \in X$  to the *d*-dimensional vector  $y_i$  given by:

$$y_i = (v_1(i), \dots, v_d(i)).$$





### Frames and HSI data

• We wish to use a data dependent frame  $\Phi = \{\varphi_i\}_{i=1}^s$  to represent the reduced dimension space  $Y = \{y_i\}_{i=1}^N \subset \mathbb{R}^d$ :

$$y_i = \sum_{j=1}^s c_{i,j} \varphi_j, \quad \forall y_i \in Y.$$

- Possible frame construction algorithms:
  - existing endmember algorithms
  - modified frame potential [Benedetto, Fickus; 2003]
- Possible frame coefficients:

• 
$$c_{i,j} = \langle y_i, S^{-1}(\varphi_i) \rangle$$

• 
$$c_{i,\cdot} = \arg\min_{c} \|c\|_{\ell^1}$$
 subject to  $\Phi c = y_i$ 





## Why use frames?

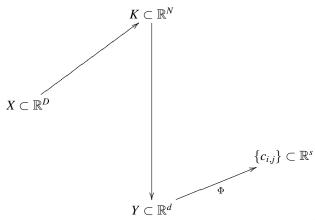
#### Why use frames?

- Traditional endmembers may be mixtures of many prominent features.
- Overestimating the number of classes allows for flexibility in representing mixtures and pure elements.
- Empirical evidence suggests that distinct classes are not orthogonal to each other. Unlike the orthogonal eigenvectors of K, frame elements need not be orthogonal.





## Review of Algorithm





### Urban



Figure: HYDICE Copperas Cove, TX - http://www.tec.army.mil/Hypercube/



#### **Urban Classes**

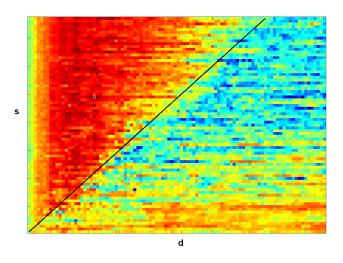
#### 22 classes in the Urban data set, including:

- Dark asphalt
- Vegetation: grass
- Soil 1
- Soil 2
- Soil 3 (dark)
- Roof: Walmart





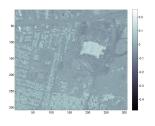
### Overview of Classification Results

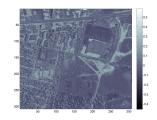




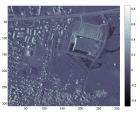


## Sample Frame Coefficients









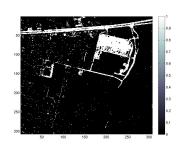




## Dark asphalt



(e) Urban

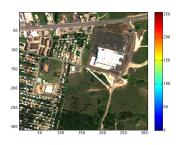


(f) Dark Asphalt

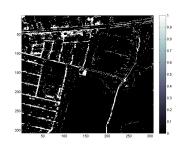




## Light asphalt



(a) Urban

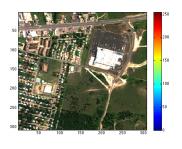


(b) Light asphalt

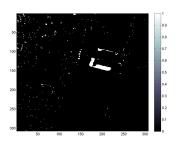




### Concrete



(a) Urban

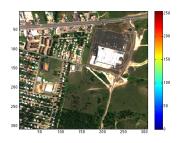


(b) Concrete





## Vegetation: pasture



(a) Urban

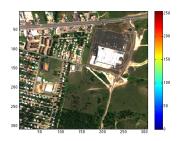


(b) Vegetation: pasture

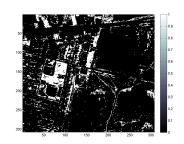




### Vegetation: grass



(a) Urban



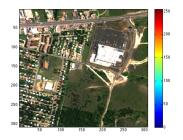
(b) Vegetation: grass



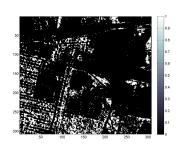


Results

### Vegetation: trees



(a) Urban

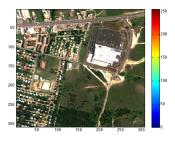


(b) Vegetation: trees

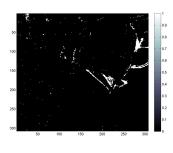




### Soil 1



(a) Urban

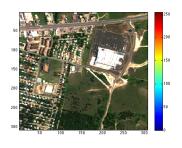


(b) Soil 1

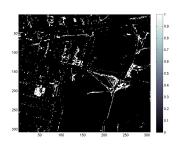




### Soil 2



(a) Urban

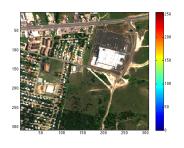


(b) Soil 2

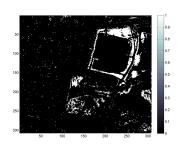




# Soil 3 (dark)



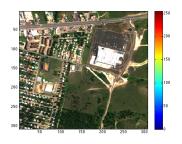
(a) Urban



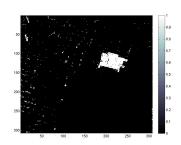
(b) Soil 3 (dark)



### Roof: Walmart



(a) Urban

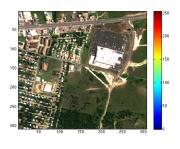


(b) Roof: Walmart

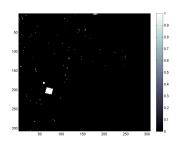




### Roof: A



(a) Urban

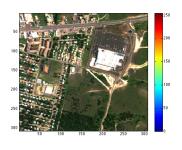


(b) Roof: A

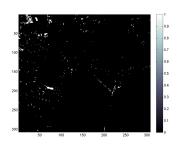




### Roof: B



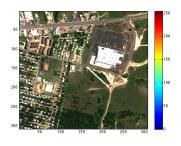
(a) Urban



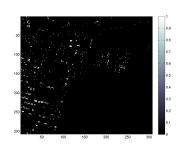
(b) Roof: B



### Roof: light gray



(a) Urban

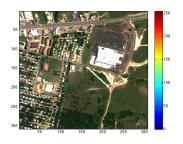


(b) Roof: light gray

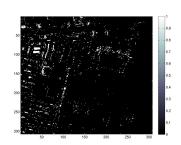




### Roof: dark brown



(a) Urban



(b) Roof: dark brown

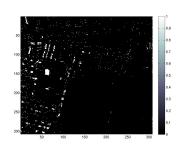




Results



(a) Urban

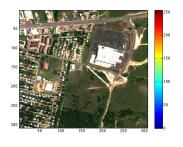


(b) Roof: church

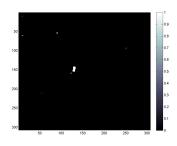




### Roof: school



(a) Urban

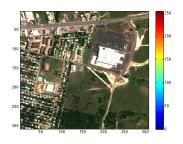


(b) Roof: school

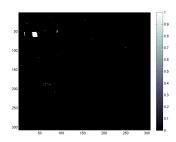




## Roof: bright



(a) Urban

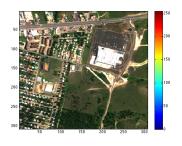


(b) Roof: bright

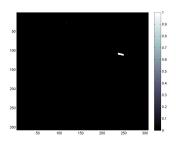




### Roof: blue green



(a) Urban

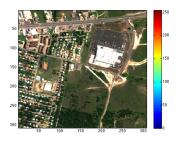


(b) Roof: blue green

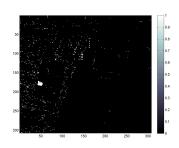




### Tennis court



(a) Urban

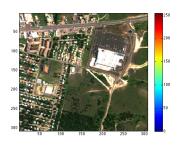


(b) Tennis court

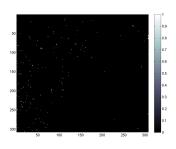




### Pool water



(a) Urban

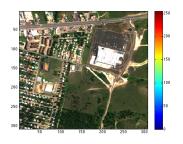


(b) Pool water

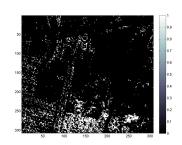




## Shaded vegetation



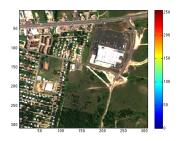
(a) Urban



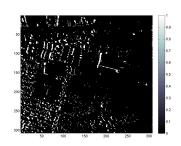
(b) Shaded vegetation



## Shaded pavement



(a) Urban



(b) Shaded pavement





### Thank you

Thank you for your time.

http://www.math.umd.edu/~hirn/



