Regression of Quantum Energies by Scattering

Matthew Hirn, Stéphane Mallat, Nicolas Poilvert

May 7, 2015

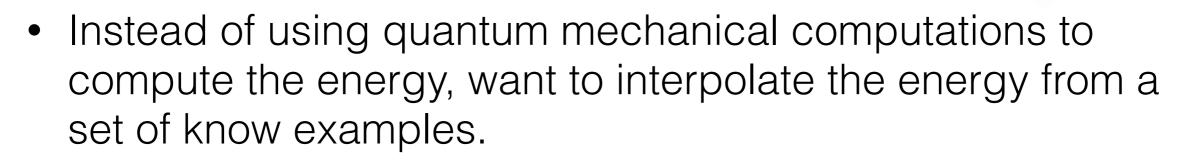
Quantum Energy Regression

- x = state of molecule
 - = (nuclear charges, positions of nuclei)

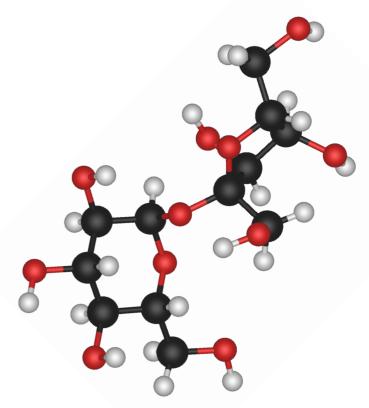
$$= \{(z_k, r_k) \in \mathbb{R} \times \mathbb{R}^3\}_k$$

 Energy of the molecule: Schrödinger's Equation

$$\widehat{H}\Psi = E\Psi, \quad E = E(x)$$



Interpolation is faster, but can we make it accurate?



Quantum Energy Regression

Given a small training set of known examples:

Training Set =
$$\{(x_i, E(x_i))\}_i$$

 Using knowledge of the physics, construct a new nonlinear representation of the molecular state

$$\Phi(x) = \{\phi_p(x)\}_p$$

Linearly regress the energy over this new dictionary:

$$\widetilde{E}(x) = \sum_{p} \alpha_{p} \phi_{p}(x)$$

Learn the weights $\{\alpha_p\}_p$ from the training set

• Computational cost is the cost of computing $\Phi(x)$

Representation Properties

Regression:
$$\widetilde{E}(x) = \sum_{p} \alpha_p \phi_p(x), \quad x = \{(z_k, r_k)\}_k$$

1. Sparse Regression:

Can only learn a few weights from limited training

2. Permutation Invariance:

Invariant to permutations of the indexation of the atoms in each molecule

3. **Isometry Invariance:**

Invariant to actions of the isometry group on the molecular state

4. **Deformation Stability:**

Differentiable with respect to the positions of the atoms

5. Multi-scale Interactions:

- Highly energetic covalent bonds between neighboring atoms
- Weaker energetic exchanges at longer distances

Permutation Invariance: Density Functional Theory

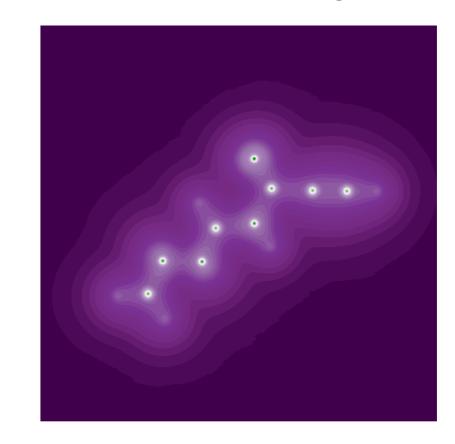
Molecular state:

$$x = \{(z_k, r_k)\}_k$$

Electronic density:

$$x \mapsto \rho_x(u)$$

Hohenberg and Kohn 1964:

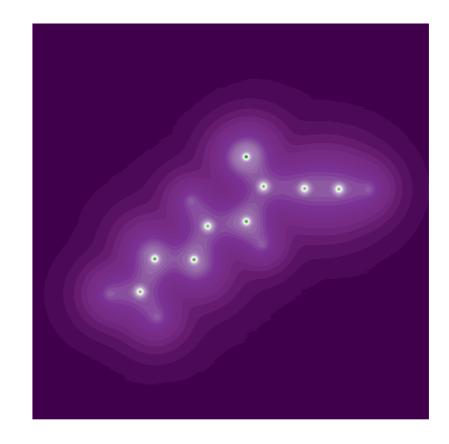


$$\rho_x = \arg\min_{\rho} E(\rho) \text{ and } E(x) = E(\rho_x)$$

$$E(\rho) = \underbrace{T(\rho)}_{\text{Kinetic energy}} + \underbrace{\int_{\mathbb{R}^3} \rho(u) V_{\text{e}}(u) \, du}_{\text{External energy}} + \underbrace{\frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\rho(u) \rho(v)}{|u - v|} \, du \, dv}_{\text{Coulomb energy}} + \underbrace{E_{\text{xc}}(\rho)}_{\text{Exchange correlation}}$$

Permutation Invariance: Density Functional Theory

- ρ_x is permutation invariant, but still need other properties
- Given ρ_x , we could interpolate $E(\rho_x)$ in a dictionary $\Phi(\rho_x) = \{\phi_p(\rho_x)\}_p$
- Computing ρ_x requires complex quantum mechanical calculations. Need a substitute that we can compute fast.



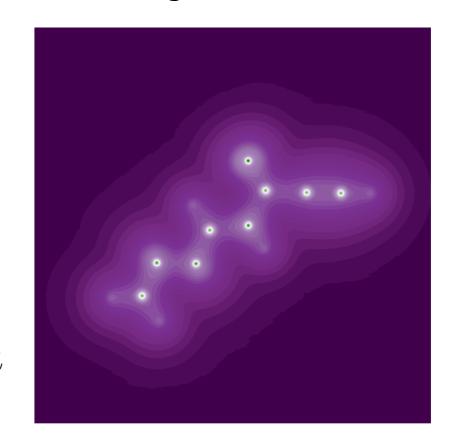
$$E(\rho) = \underbrace{T(\rho)}_{\text{Kinetic energy}} + \underbrace{\int_{\mathbb{R}^3} \rho(u) V_{\text{e}}(u) \, du}_{\text{External energy}} + \underbrace{\frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\rho(u) \rho(v)}{|u - v|} \, du \, dv}_{\text{Coulomb energy}} + \underbrace{\int_{\text{Exchange correlation}}^{\text{Exchange correlation}}}_{\text{(electron-nuclei attraction)}}$$

Approximate Electronic Density

 We approximate the electronic density with a linear superposition of atomic electronic densities:

$$\tilde{\rho}_x(u) = \sum_k \rho_{a(k)}(u - r_k)$$

 $\rho_a = \text{exact electronic density of atom } a$



 $\rho_x(u)$

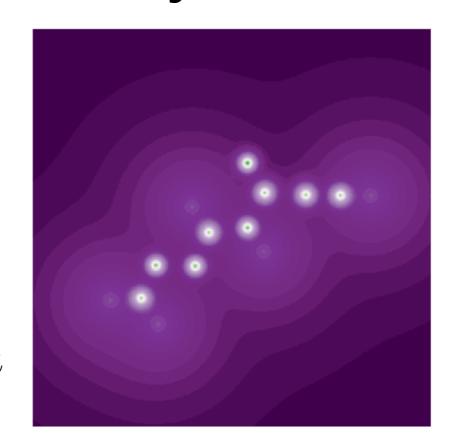
$$E(x) = E(\rho_x) \approx \widetilde{E}(\widetilde{\rho}_x) = \sum_{p} \alpha_p \phi_p(\widetilde{\rho}_x)$$

Approximate Electronic Density

 We approximate the electronic density with a linear superposition of atomic electronic densities:

$$\tilde{\rho}_x(u) = \sum_k \rho_{a(k)}(u - r_k)$$

 $\rho_a = \text{exact electronic density of atom } a$



 $\tilde{\rho}_x(u)$

$$E(x) = E(\rho_x) \approx \widetilde{E}(\widetilde{\rho}_x) = \sum_{p} \alpha_p \phi_p(\widetilde{\rho}_x)$$

What is the dictionary $\Phi = {\{\phi_p\}_p}$?

Coulomb Potential Energy

Coulomb Potential Energy:

$$U(\rho) = \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \rho(u) \rho(v) V(u - v) \, du \, dv, \quad V(u) = |u|^{-1}$$

Convolutional formula for Coulomb energy:

$$U(\rho) = \frac{1}{2} \int_{\mathbb{R}^3} \rho * \bar{\rho}(u) V(u) du, \quad \bar{\rho}(u) = \rho(-u)$$

Fourier transform:

$$\hat{\rho}(\omega) = \int_{\mathbb{R}^3} \rho(u) e^{-iu \cdot \omega} \, du$$

Coulomb energy in frequency:

$$U(\rho) = \frac{1}{2(2\pi)^3} \int_{\mathbb{R}^3} |\hat{\rho}(\omega)|^2 \widehat{V}(\omega) d\omega$$

Fourier Regression of Coulomb Potential Energy

Coulomb energy diagonalized in Fourier:

$$U(\rho) = \frac{1}{2(2\pi)^3} \int_{\mathbb{R}^3} |\hat{\rho}(\omega)|^2 \widehat{V}(\omega) d\omega \qquad \widehat{V}(\omega) = C|\omega|^{-2}$$

Isometry Invariant Fourier Representation:

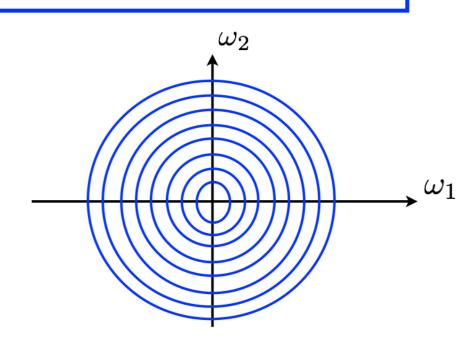
In polar coordinates $\omega=\gamma\eta$ with $\gamma=|\omega|$ and $\eta\in S^2,\ \widehat{V}(\omega)=\widehat{V}(\gamma)$ so

$$U(\rho) = \frac{1}{2(2\pi)^3} \int_{\mathbb{R}} \widehat{V}(\gamma) \phi_{\gamma}^2(\rho) d\gamma, \quad \phi_{\gamma}^2(\rho) = \int_{|\omega| = \gamma} |\widehat{\rho}(\omega)|^2 d\omega$$

 To learn discrete weights, approximate with Riemann sum:

$$\widetilde{U}(\rho) = \frac{\Delta}{2(2\pi)^3} \sum_{m=1}^{M} \widehat{V}(m\Delta) \phi_{m\Delta}^2(\rho)$$

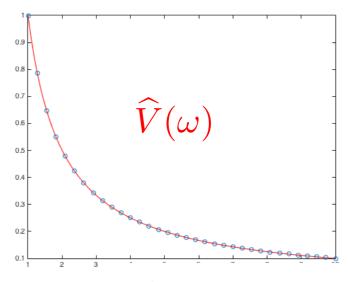
•
$$U(\rho) = (1 + O(\epsilon))\widetilde{U}(\rho) \Rightarrow M = O(\epsilon^{-2})$$

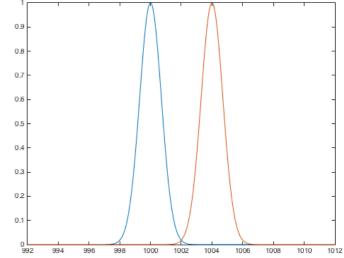


Fourier Limitations

- The Fourier representation does not take advantage of the regularity of $\widehat{V}(\omega)$ away from $\omega=0$. Therefore it is not sparse.
- Deformations produce instabilities at large distances, so it cannot model long range interactions:

Dictionary $\phi_{\omega}(\rho) = |\hat{\rho}(\omega)|^2$ is equivalent to $\phi_u(\rho) = \rho * \bar{\rho}(u)$ $\rho(u) = \text{bumps of width } \sigma \text{ at positions } \{r_k\}_k$ $\phi_u(\rho) = \text{bumps of width } 2\sigma \text{ at positions } \{r_k - r_l\}_{k,l}$ A small diffeomorphism changes distances by $\epsilon(r_k - r_l)$ Unstable if $|r_k - r_l| \ge 2\sigma/\epsilon$





$$r_k - r_l = 1000$$
$$\sigma = 2$$
$$\epsilon = 0.004$$

Wavelets

Complex valued Morlet wavelet:

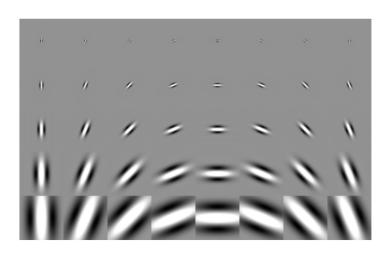
$$\psi(u) = g(u)(e^{i\eta_0 \cdot u} - C), \quad \int_{\mathbb{R}^3} \psi(u) \, du = 0$$

Wavelet transform dilates and rotates the wavelet:

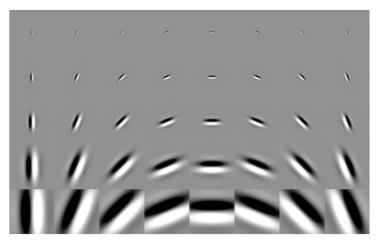
$$\psi_{j,r}(u) = 2^{-3\frac{j}{Q}}\psi(2^{-\frac{j}{Q}}r^{-1}u), \quad (j,r) \in \mathbb{Z} \times O(3)$$

 $Q \in \mathbb{N}$: Scale oversampling factor

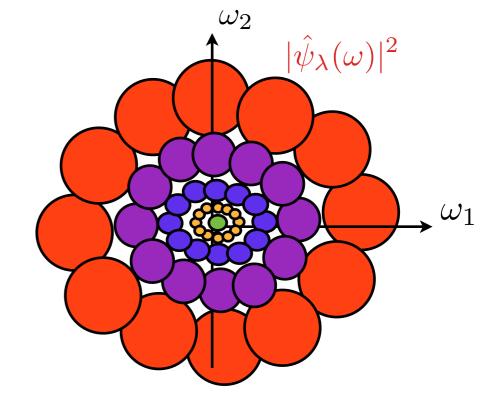
$$W[j,r]\rho(u) = \{\rho * \psi_{j,r}(u)\}_{j \in \mathbb{Z}, r \in O(3), u \in \mathbb{R}^3}$$



Real parts

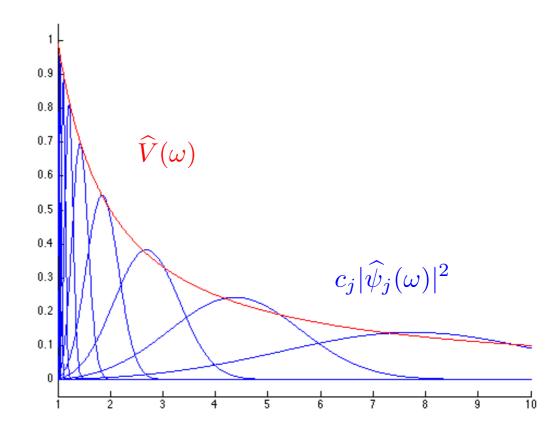


Imaginary parts



Fourier vs Wavelets

• Wavelets separate scales logarithmically and can thus take advantage of the multi-scale structure of the energy. For the Coulomb potential energy, wavelets take advantage of the regularity of $\widehat{V}(\omega)$ away from $\omega=0$.



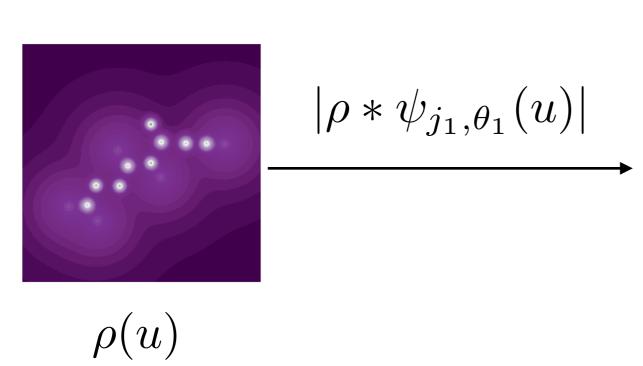
 Mallat 2012: Wavelets are stable. They are Lipschitz continuous to the action of diffeomorphisms:

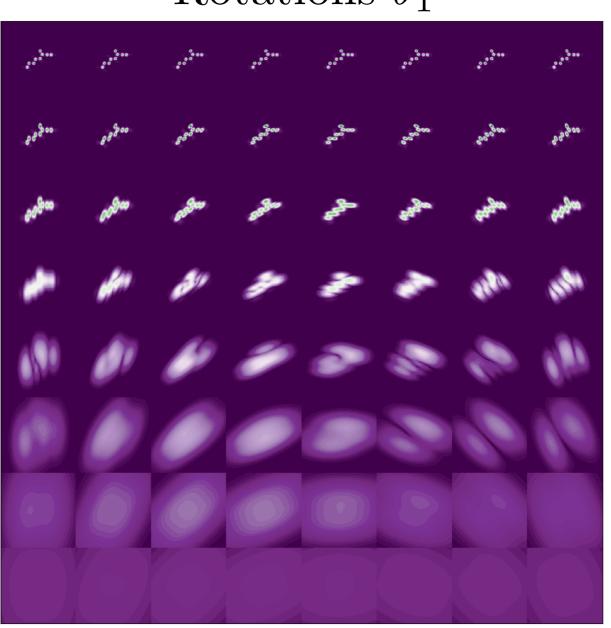
$$||[W, D_{\tau}]|| = ||WD_{\tau} - D_{\tau}W|| \le C \cdot \sup_{u \in \mathbb{R}^3} ||\nabla \tau(u)||$$

Scales j_1

Wavelet Transform: Interactions of Waves

Rotations θ_1





Wavelet Regression of Coulomb Potential Energy

Definition: Isometry Invariant Wavelet Representation

Define the \mathbf{L}^2 Isometry Invariant Wavelet Representation $\Phi=\{\phi_j^2\}_{j\in\mathbb{Z}}$ as

$$\phi_j^2(\rho) = \int_{\mathbb{R}^3} \int_{O(3)} |\rho * \psi_{j,r}(u)|^2 dr du$$

Theorem: Wavelet Coulomb Regression (H., Mallat, Poilvert 2015)

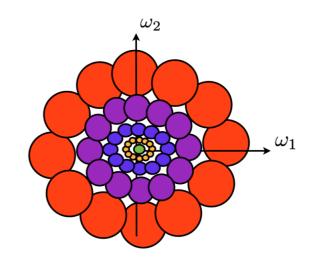
For a scale oversampling factor $Q \in \mathbb{N}$, a minimum scale $j_{\min} \in \mathbb{Z}$, and a maximum scale $j_{\max} \in \mathbb{Z}$, define the Wavelet Regression of the Coulomb potential energy as:

$$\widetilde{U}(\rho) = \sum_{j=j_{\min}}^{j_{\max}} (c_1 2^{2j/Q} + c_2) \phi_j^2(\rho)$$

Then, for all $\epsilon > 0$, there exists Q, j_{\min} and j_{\max} such that

$$|U(\rho) - \widetilde{U}(\rho)| < \epsilon \cdot \max(\|\rho\|_1^2, \|\rho\|_2^2)$$

The number of terms grows as $|j_{\min} - j_{\max}| = O(|\log \epsilon|)$.



Quantum Wavelet and Fourier Dictionaries

- Full quantum energy is not solely quadratic!
 - Coulomb energy is quadratic in ρ
 - Chemical (covalent) bond energy grows linearly in ρ

Definition: Isometry Invariant \mathbf{L}^q Fourier Dictionary

$$\phi_{\gamma,q}(\rho) = \left(\int_{|\omega| = \gamma} |\widehat{\rho}(\omega)|^q d\omega \right)^{1/q}$$

$$\Phi_F(\rho) = \{\phi_0(\rho), \phi_{\gamma,1}(\rho), \phi_{\gamma,1}^2(\rho), \phi_{\gamma,2}^2(\rho)\}_{\gamma \in \mathbb{R}^+}$$

Definition: Isometry Invariant \mathbf{L}^q Wavelet Dictionary

$$\phi_{\gamma,q}(\rho) = \left(\int_{\mathbb{R}^3} \int_{\mathcal{O}(3)} |\rho * \psi_{j,r}(u)|^q dr du \right)^{1/q}$$

$$\Phi_W(\rho) = \{\phi_0(\rho), \phi_{j,1}(\rho), \phi_{j,1}^2(\rho), \phi_{j,2}^2(\rho)\}_{j \in \mathbb{Z}}$$

$$\phi_0(\rho) = \int_{\mathbb{R}^3} \rho(u) \, du$$

Learning the Weights

- Training set: $\{(x_i, E(x_i))\}_i \mapsto \{(\tilde{\rho}_{x_i}, E(\rho_{x_i}))\}_i$
- Want an optimal M-term sparse regression that will minimize the error over the training set (NP hard!):

$$\widetilde{E}_M(\widetilde{\rho}_x) = \sum_{k=1}^M \alpha_k \phi_{p_k}(\widetilde{\rho}_x)$$

 Orthogonal least squares greedy algorithm selects the functionals and learns the weights one at a time by minimizing

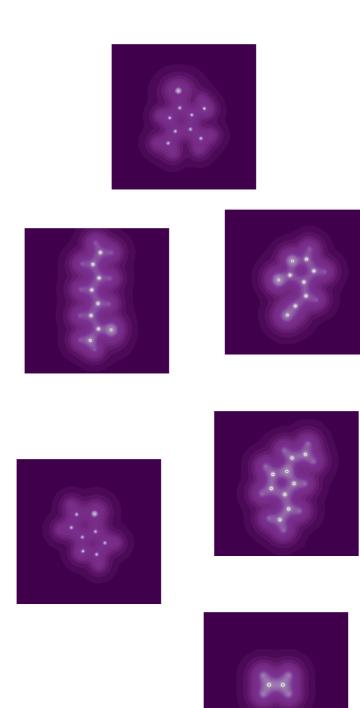
$$\sum_{i} |E(\rho_{x_i}) - \widetilde{E}_m(\widetilde{\rho}_{x_i})|^2$$

at each iteration $m = 1, \dots, M$

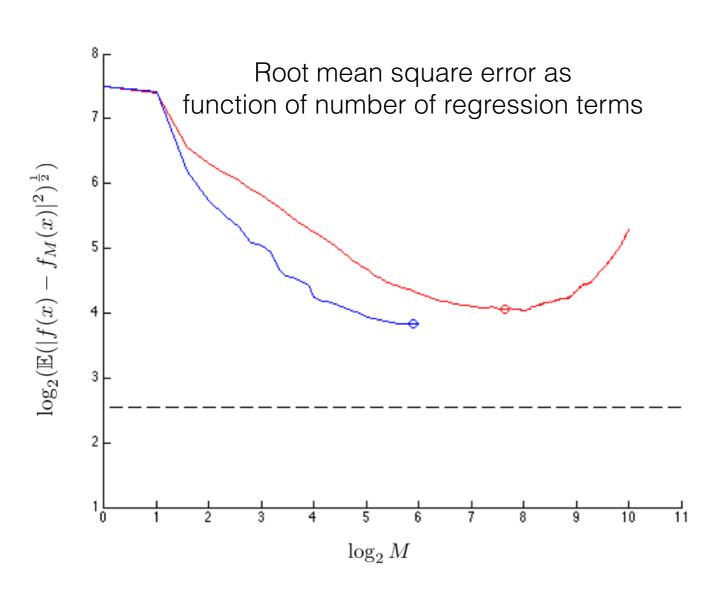
- The optimal value of M (to avoid overfit) is learned through cross validation
- The variance error is reduced by "bagging"

Data Set

- Data set $\{x_i, E(x_i)\}_i$ consisting of over 4000 planar organic molecules made up of hydrogen, carbon, nitrogen, oxygen, sulfur, and chlorine.
- Molecules have between 6 and 20 atoms
- Each molecule x_i is unique and in its ground state configuration (configuration that minimizes energy)
- $E(x_i)$ is the atomization energy of the molecule (energy necessary to break atomic bonds)



Fourier and Wavelet M-term Regression Error



$$\widetilde{E}_M(\widetilde{\rho}_x) = \sum_{k=1}^M \alpha_k \phi_{p_k}(\widetilde{\rho}_x)$$

Root Mean Square Error (kcal/mol)

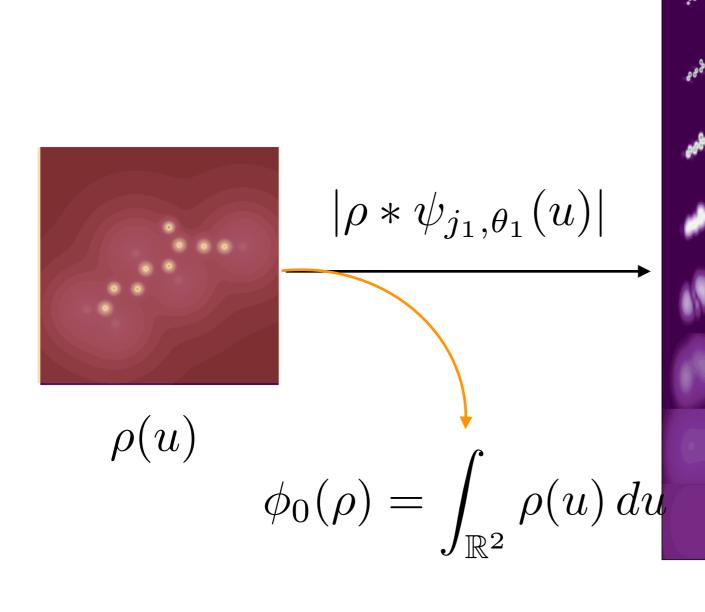
	Coulomb	Fourier	Wavelet
4000 Training	5.8	17	14
400 Training	21	16	16

Key: Fourier, Wavelets, Coulomb matrices (dashed line)

Scales j_1

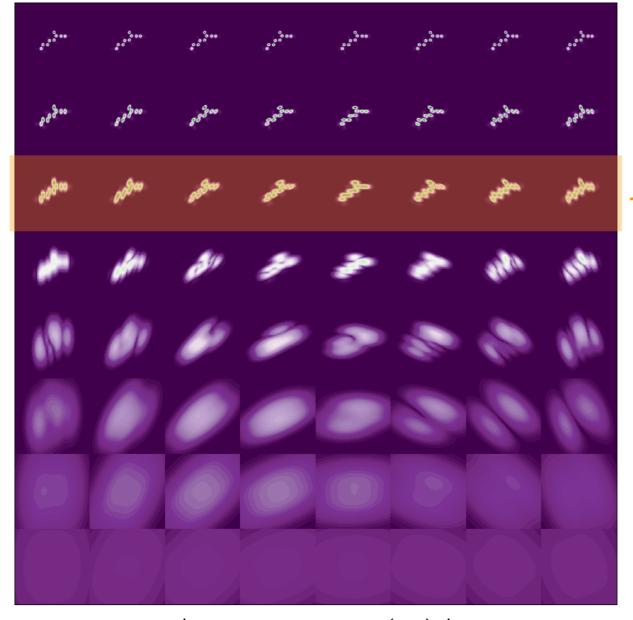
Scattering in 2D: Layer 1

Rotations θ_1



Scattering in 2D: Layer 1

Rotations θ_1



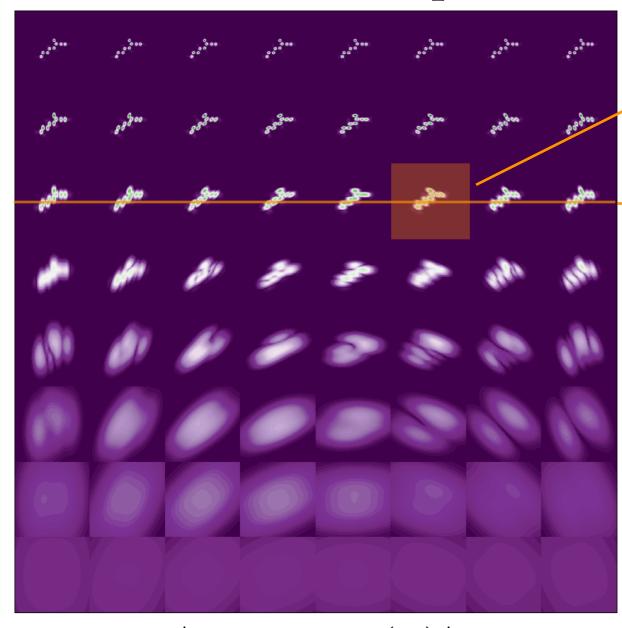
$$|\rho * \psi_{j_1,\theta_1}(u)|$$

Scales
$$j_1$$
.
$$\phi_{j_1,q}^q(\rho)=\int_{\mathbb{R}^2}\int_0^{2\pi}|\rho*\psi_{j_1,\theta_1}(u)|^q\,d\theta_1\,du$$
 ~60 functionals

Scattering in 2D: Layer 2

Scales

Rotations θ_1



 $|\rho * \psi_{j_1,\theta_1}(u)|$

Recover translation variability:

$$|\rho * \psi_{j_1,\theta_1}| * \psi_{j_2,\theta_2}(u)$$

Recover rotation variability:

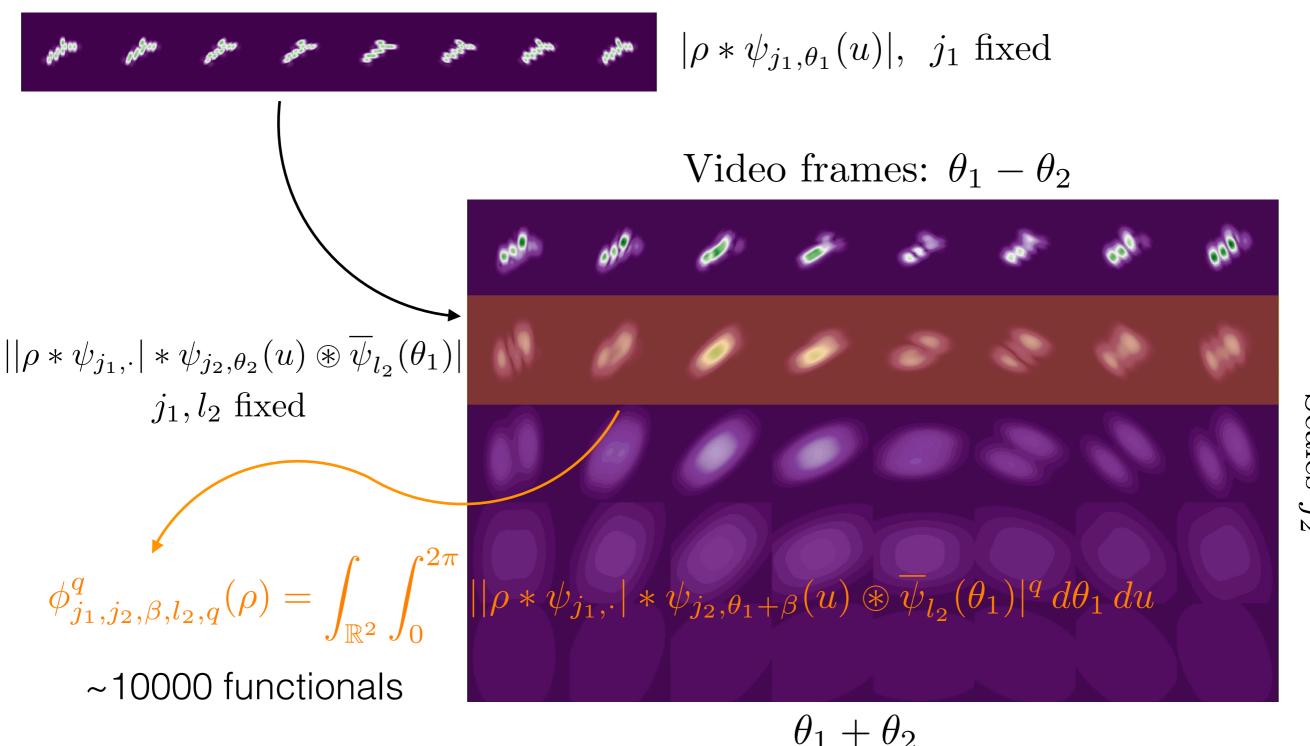
$$|\rho * \psi_{j_1,.}(u)| \circledast \overline{\psi}_{l_2}(\theta_1)$$

Combine to recover roto-translation variabiltiy:

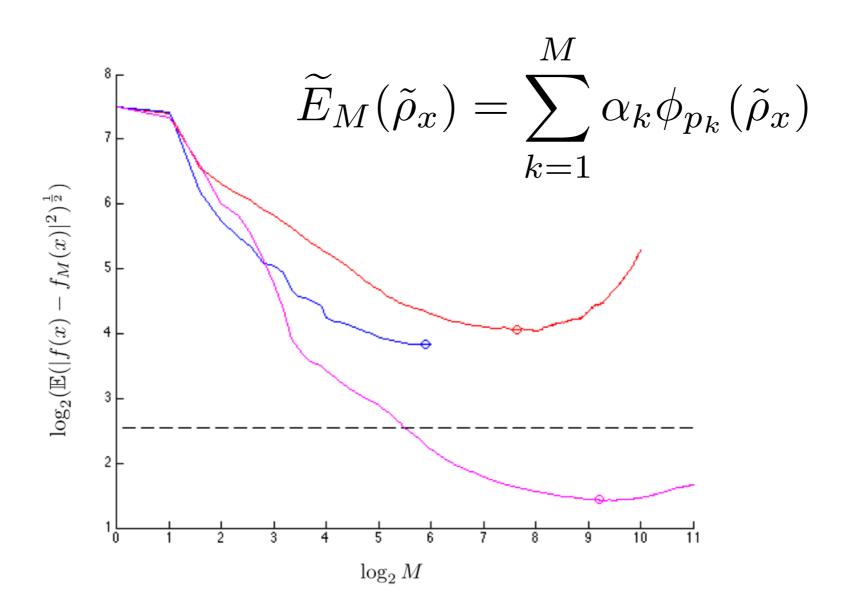
$$||\rho * \psi_{j_1,.}| * \psi_{j_2,\theta_2}(u) \circledast \overline{\psi}_{l_2}(\theta_1)|$$

Scales j_2

Scattering in 2D: Layer 2



Scattering M-term Regression Error



Key: Fourier, Wavelets, Scattering, Coulomb (dashed line)

Numerical Results

Root Mean Square Error (kcal/mol)

	Coulomb	Fourier	Wavelet	Scattering
4000 Training	5.8	17	14	2.7
400 Training	21	16	16	9.0

- Cost in real time: minutes per molecule
- Some open questions and future directions:
 - More training -> Better scattering result?
 - Utilize forces: Scattering functionals are differentiable
 - Mathematical explanation for the 2nd layer functionals?
 - Can we learn chemistry?
 - What other physical functionals can we learn?

Scattering in 3D: 1st Layer

- $E(3) = \mathbb{R}^3 \rtimes O(3) \text{ and } O(3) = S^2 \rtimes O(2)$
- If we use a wavelet ψ that is radially symmetric about an axis η_0 , then we can ignore the O(2) component since ψ will not vary over O(2)

if
$$r\eta_0 = \eta_0$$
 then $\psi(ru) = \psi(u), r \in O(3)$
$$\psi(u) = g(u)(e^{i\eta_0 \cdot u} - C)$$

• For the first layer wavelet transform, this means we can index the rotation by $\eta \in S^2$:

$$\psi_{j,r}(u) = \psi_{j,\eta}(u) = 2^{-3\frac{j}{Q}}\psi(2^{-\frac{j}{Q}}r^{-1}u), \quad \eta = r\eta_0 \in S^2, \quad j \in \mathbb{Z}$$

$$\rho(u) \mapsto |\rho * \psi_{j,\eta}(u)|$$

$$\phi_{j,p}(\rho) = \left(\int_{\mathbb{R}^3} \int_{S^2} |\rho * \psi_{j,\eta}(u)|^p \, d\eta \, du\right)^{1/p}$$

Scattering in 3D: 2nd Layer

- The second layer can be computed as two separable wavelet transforms, one over translations (\mathbb{R}^3) and one over rotations (S^2) .
- Isotropic wavelet over S^2 :

$$\overline{\psi}_{l,\nu}: S^2 \to \mathbb{R}$$
, scale 2^l and translation $\nu \in S^2$

• Wavelet transform over \mathbb{R}^3 with the same Morlet wavelet:

$$|\rho * \psi_{j_1,\eta}| * \psi_{j_2,\eta_2}(u)$$

• Followed by the wavelet transform over S^2 :

$$\int_{S^2} |\rho * \psi_{j_1,\eta}| * \psi_{j_2,\eta_2}(u) \overline{\psi}_{l_2,\nu}(\eta) \, d\eta$$

Second layer functionals:

$$\phi_{j_1,j_2,\eta_2,l_2,p}(\rho) = \left(\int_{\mathbb{R}^3} \int_{S^2} \left| \int_{S^2} \left| \rho * \psi_{j_1,\eta} \right| * \psi_{j_2,\eta_2}(u) \overline{\psi}_{l_2,\nu}(\eta) \, d\eta \right|^p \, d\nu \, du \right)^{1/p}$$

Thank you